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Abstract—This paper presents a numerical study of the chaotic dynamics of a dynamically
asymmetric unbalanced ball (Chaplygin top) rolling on a plane. It is well known that the
dynamics of such a system reduces to the investigation of a three-dimensional map, which
in the general case has no smooth invariant measure. It is shown that homoclinic strange
attractors of discrete spiral type (discrete Shilnikov type attractors) arise in this model for
certain parameters. From the viewpoint of physical motions, the trace of the contact point of
a Chaplygin top on a plane is studied for the case where the phase trajectory sweeps out a
discrete spiral attractor. Using the analysis of the trajectory of this trace, a conclusion is drawn
about the influence of “strangeness” of the attractor on the motion pattern of the top.
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INTRODUCTION

1. This paper is concerned with a dynamical system describing the rolling motion of a heavy ball
on a plane for which all central moments of inertia are different and the center of mass does not lie
in any of the principal planes of inertia. Following [1, 2], we shall call this system a Chaplygin top. It
is assumed that the velocity of the contact point is zero, which leads to nonintegrable constraints.
Problems of this kind are treated in nonholonomic mechanics (for its development, see the recent
review [3]).

In the case where the center of mass of the ball coincides with its geometric center, we obtain the
classical Chaplygin ball rolling problem [4] (1903), in which the equations of motion are integrable
by quadratures. Consequently, the Chaplygin ball exhibits regular behavior. A qualitative analysis
of this behavior is presented in [5].

As compared to the Chaplygin ball, the dynamics of the Chaplygin top is much more complex.
In this case, the system is characterized by chaotic motions and can have, depending on the system
parameters, simple or strange attractors [2, 6]. The existence of strange attractors for nonholonomic
systems was originally reported in [7–9] (where a rattleback is considered as an example) and is
closely related to the absence (in the general case for nonholonomic systems) of an invariant measure
with smooth density [10].

2. The system dealt with in this paper possesses an energy integral, i.e., it is conservative. This
is due to the fact that in the case of ideal rolling the reaction forces of constraints do not do any
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work, and the attractors themselves arise on the level surface of this integral. The conditions for the
existence of an energy integral for nonholonomic systems have been discussed recently in [11, 12].

The study of the dynamics of a Chaplygin top is a particular case of the general description of
the rolling motion of rigid bodies on a plane R2 and a sphere S2, which is systematically treated in
[13]. The existence of various tensor invariants (first integrals, symmetry fields, Poisson structure
and invariant measure) depending on the geometrical and dynamical parameters of the rolling
body is analyzed in [13]. This concept, which was called the hierarchy of dynamics of nonholonomic
systems, points to the fact that they differ from Hamiltonian systems. Moreover, it was noted in
[13] that in the case of a rigid body rolling without slipping on R2 and S2 the analysis of dynamics
generally reduces to analysis of a three-dimensional Poincaré map.

The three-dimensional point map, which arises in other problems, was analyzed by numerical
and analytical methods in [14–17] in relation to the Lorenz and Rössler models. We note that the
concept of hyperchaos proposed by Rössler in 1979 [18, 19] was motivated by the study of four-
dimensional flows, which obviously reduce to three-dimensional maps. In addition, in [19] the first
example was given of a formal three-dimensional map that admits a strange hyperchaotic attractor.
Formal three-dimensional dissipative Hénon maps were studied in [14, 20] from the viewpoint of
the existence of various strange attractors and quasi-periodic bifurcations, respectively.

As an interesting remark, we note that nowadays three-dimensional volume-preserving point
maps [21, 22] are of the greatest interest to researchers. Examples of such maps relevant to
nonholonomic mechanics were first given for systems describing the dynamics of a ball rolling
on various surfaces [23, 24].

3. Since there is no invariant measure in the system discussed in this paper (and in [7, 13]),
it may be classified as dissipative. However, as opposed to the real mechanical dissipation, the
dissipation that arises formally due to nonholonomic constraints is rather specific (“nonholonomic”)
in nature. Nonholonomic dissipation is still poorly understood, but its typical feature is that regions
of expansion and contraction of the phase volume (arising due to sign-alternating divergence) coexist
in phase space. In addition, systems of this kind admit, generally speaking, several involutions such
as those analyzed in [25]. The equations of motion for a Chaplygin top possess only one involution,
since its center of mass does not lie in any of the principal planes of inertia. Nevertheless, even in
this case to each attractor in phase space there corresponds a repeller symmetric to it, and this
reversibility is also essential for analysis of bifurcations. We also note that, in view of the specific
properties of nonholonomic dissipation, nonholonomic systems are sometimes said to occupy an
intermediate position between dissipative and Hamiltonian systems (see, e.g., [26]).

Due to the specificity of nonholonomic dissipation, the appearance of various strange attractors
(as predicted by general theory) in particular nonholonomic systems is somewhat unusual, especially
as each of them is associated with a specific type of dynamical behavior. We note that, for many
nonholonomic systems without an invariant measure with smooth density, strange attractors usually
coexist with another dynamical phenomenon, that of reversal. It was in rattleback dynamics that
the reversal was experimentally observed for the first time (see, e.g., [7]). Later, the reversal was
theoretically predicted for the Chaplygin top [2] and for the Suslov problem [27].

4. Previously, a figure-eight attractor was found for the Chaplygin top (see [2]). By this we mean
discrete attractors that, in contrast to flow attractors, are defined for three-dimensional maps. The
figure-eight attractor, like the discrete Lorenz attractor pointed out in rattleback dynamics [9], is
homoclinic, that is, it arises from a hyperbolic point (for which an intersection of the stable and the
unstable manifold belongs to the attractor. In [28], a scenario was described for the appearance of
a discrete spiral attractor (or Rössler or Shilnikov attractor), which was numerically found for the
model Hénon map [20]. General concepts and applications of spiral attractors, which arise both in
flows and in maps, are presented in Section 1 of this paper.

In this paper, by constructing charts of Lyapunov exponents on the plane of system parameters
and by analyzing local and global bifurcations, we point out and study two types of discrete spiral
attractors in the system under consideration: homoclinic attractors (on the basis of the homoclinic
structure of a saddle-focus point) and heteroclinic attractors (on the basis of the heteroclinic
structure of a saddle-focus point of period 2.

5. In the conclusion, we consider the motion of the contact point of the ball in the case where
the phase trajectory sweeps out a spiral attractor. In contrast to the generally accepted notion

REGULAR AND CHAOTIC DYNAMICS Vol. 21 Nos. 7–8 2016



SPIRAL CHAOS IN THE NONHOLONOMIC MODEL OF A CHAPLYGIN TOP 941

of a chaotic (or even hyperchaotic) spiral attractor, it makes no significant contribution to the
conditionally periodic dynamics of the contact point. As shown in [29], for the trajectory of the
contact point to be strongly chaotic, the attractor must occupy a much larger region in phase
space. It turns out that in this case, in addition to chaotic diffusion, directed drift is possible,
which is pointed out for nonautonomous nonholonomic systems in [30]. In this paper, we consider
the trajectory of the contact point very briefly, but it should be stressed that its analysis is a very
important dynamical problem (treated for the Chaplygin ball in [5]).

Indeed, it would be interesting to experimentally discover the effects of dynamical behavior
described in this paper and in [2, 9], since the trace of the contact point on the plane lends itself
to simple measurement. We note that the study of the behavior of dynamically asymmetric balls
has been motivated recently by problems of mobile robotics which are related to the design of a
controlled spherical robot (sphericle); for a review of relevant literature see [31–33]. The chaoticity
of the trajectory of the contact point can be regarded as a factor that not only prevents control, but
also makes it sometimes possible to use it for producing a directed drift [34] (see also [29, 30]). The
fairly regular behavior of the contact point on the strange attractor agrees with a similar behavior
of the contact point on the discrete Lorenz attractor, which is discussed in [35].

In the case of displacement of the center of mass, but in the absence of a gravitational field,
as shown in [13], there exists an additional first integral quadratic in the angular velocities. On
the level surface of this integral in the Poincaré section there are, as a rule, only simple attractors
which define quasi-periodic double-frequency motions in absolute space.

6. In the future, it would be interesting to explore the dynamics of a Chaplygin top on a sphere
[13]. The system is chaotic even if the center of mass coincides with the geometric center, but
possesses an invariant measure. Of particular interest is the case of behavior of such a system in
the absence of a gravitational field, which also reduces to a three-dimensional map. An interesting
integrable case which generalizes the classical system of a Chaplygin ball rolling on a plane and
takes place at a certain ratio between the radii of the fixed sphere and the rolling ball was found
and analyzed in [36–38].

1. SPIRAL VS DISCRETE SPIRAL CHAOS

We give a brief review of research on spiral chaos in three-dimensional flows. These studies
go back to the work of L. P. Shilnikov (1965) [39]. The theorem proved by L. P. Shilnikov states
that near a separatrix loop of a saddle-focus equilibrium (see Fig. 1a), subject to some additional
conditions imposed on the eigenvalues of this equilibrium state, there exists a countable set of
periodic saddle trajectories, resulting in complex behavior of the system near the loop. In fact, the
theorem gives a simple criterion for the existence of chaos for a wide class of systems possessing
a separatrix loop of a saddle-focus. Afterwards, this kind of chaos was called spiral chaos1) or
Shilnikov’s chaos.

However, we note that, subject to the conditions of Shilnikov’s theorem, the appearance of
complex dynamics related to the existence of a countable set of periodic saddle trajectories does
not always lead to the appearance of strange attractors. Moreover, complex dynamics may not
manifest itself at all. For example, if the system is given on a noncompact manifold, the trajectories
started in a neighborhood of a loop of a saddle-focus can escape to infinity. Also, the trajectories
can escape to simple (regular) attractors, whose emergence are not connected with a loop. An
additional necessary condition for a strange attractor to arise from a loop of a saddle-focus is the
existence of an absorbing region that must not have any simple (regular) attractors. The strange
attractor arising in this case is called a spiral attractor (other names are the Shilnikov attractor or
the Rössler attractor).

As an example, Fig. 1b shows a phase portrait of a spiral attractor for the Rössler system [40, 41]
with the parameter values a = 0.43, b = 0.4, c = 4.5. The spectrum of Lyapunov exponents in
this case is (Λ1 ≈ 0.119,Λ2 ≈ 0.0,Λ3 ≈ −3.75), and the dimension according to Kaplan –Yorke is
D ≈ 2 + 0.119/3.75 ≈ 2.03.

1)Note that the term spiral chaos was first introduced in 1976 by O.E.Rössler [40]. Apparently the author did not
know of the work of Shilnikov and called the chaos arising in his model spiral chaos (see Fig. 1b). It was shown
in [41] that spiral chaos discovered in [40] arises near a separatrix loop of a saddle-focus.
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(a)

(b)

Fig. 1. (a) Separatrix loop of a saddle-focus with a two-dimensional stable manifold and a one-dimensional
unstable manifold, (b) Spiral attractor in the Rössler system [40, 41].

The papers [41–43] were the first to show numerically the appearance of a spiral attractor. In
all probability, it was these papers that drew the attention of Western scientists to the discovery of
spiral chaos. They were followed by a large number of studies on specific systems from very different
applications, in which the authors used different methods to establish the existence of a loop of a
saddle-focus and thus proved that the discovered strange attractors are of spiral type. Thus, the
authors succeeded in finding spiral attractors in phase synchronization systems [44], radioelectronic
devices, such as the Chua contour [45] and the Anishchenko –Astakhov radio generator [46], optical
laser systems [47–50], chemical reactions [51, 52], glow discharge systems [53], in some class of
models describing the behavior of neurons [54], biophysical experiments [55], electromechanical
systems [56, 57], electrochemical processes [58, 59], nonlinear convection in magnetic fields [60],
mechanical systems [61] etc.

Chaos of spiral type, like other kinds of chaotic behavior typical of three-dimensional systems,
such as the Hénon attractor or the Lorenz attractor, can also be observed in systems of greater
dimension. However, systems with dimension n � 4 can exhibit new types of chaotic behavior
which are impossible in a system with smaller dimension. Discrete spiral chaos is an example of
such behavior. Discrete spiral chaos is associated with the appearance of a homoclinic intersection
of a stable and an unstable manifold of the saddle-focus limit cycle (a fixed saddle-focus point in
the case of transition to a map, see Fig. 2a).

(a) (b)

Fig. 2. Homoclinic (a) and heteroclinic (b) structures for three-dimensional maps
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Since this has to do with homoclinic Poincaré trajectories to the hyperbolic fixed point of a
three-dimensional map (corresponding to a periodic solution of the flow), we point out two essential
differences from the homoclinics to an equilibrium for three-dimensional flows:

• the existence of a homoclinic Poincaré trajectory (in the general case) entails the appearance
of a Smale horseshoe [62, 63] and hence complex dynamics.

• the homoclinic Poincaré trajectory corresponds to the intersection of manifolds (which is
impossible for equilibrium states) and is generally rough, that is, it exists on some interval
of parameter values.

Thus, in a neighborhood of a rough homoclinic Poincaré trajectory of a hyperbolic fixed point,
complex dynamics arises always, and its type is determined by the type of this hyperbolic point.
In the case of a fixed saddle point a discrete Lorenz attractor or a figure-eight attractor can arise,
and in the case of a saddle-focus point there appears a discrete spiral attractor [20, 28].

It should be noted that in some systems one can observe another homoclinic situation related
to the emergence of a heteroclinic structure on the basis of two saddle-focus points or on the basis
of a saddle-focus point of period 2 (see Fig. 2b). It should also be noted that in the case of spiral
chaos for three-dimensional flows one distinguishes two types of attractors: spiral attractors and
screw attractors [64–66]. To date no such classification has been made for discrete spiral chaos.

A possible scenario of the emergence of a discrete attractor was presented in [28], and in [20]
such an attractor was found in a model three-dimensional map. The possibility of appearance of a
discrete spiral attractor was discussed in [67].

In what follows, by constructing and analyzing the charts of Lyapunov exponents, we show
that discrete spiral attractors can be observed in the nonholonomic model of a Chaplygin top. In
addition, in Section 4 we give a detailed description of bifurcations leading to the emergence of
spiral attractors from regular regimes and of the properties of the discovered spiral attractors.

2. EQUATIONS OF MOTION OF A CHAPLYGIN TOP

Fig. 3. The Chaplygin top on a plane.
OXY Z is a fixed coordinate system, Cxyz
is a coordinate system attached to the
center of mass of the ball, in which the
tensor of inertia of the ball is diagonal, i.e.,
I = diag(I1, I2, I3).

Consider the motion of a dynamically asymmetric ball
located in a gravitational field and rolling on a horizontal
plane without slipping. The center of mass of the ball is
displaced relative to the geometric center by the vector
a = (a1, a2, a3). Here and below, we assume that all
vectors are given in a coordinate system Cxyz located
at the center of mass of the ball and directed along the
principal axes of inertia. Let r denote the radius vector
from the the center of mass of the ball to the contact
point, and let v and ω denote the velocity of the center
of mass and the angular velocity of the ball, respectively.
Then the no-slip condition (nonholonomic constraint) can
be represented as

v + ω × r = 0,

and the equations of motion for the angular momen-
tum M relative to the contact point and the unit normal
vector γ take the form (see, e.g., [68])

Ṁ = M × ω + mṙ× (ω × r) + mg0r× γ,

γ̇ = γ × ω,
(2.1)

where m is the mass of the ball and g0 is the free-fall acceleration. The vector ω is expressed in
terms of M (see, e.g., [23]) by the relation

M = Iω + mr× (ω × r),
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where I = diag(I1, I2, I3) is the tensor of inertia of the top with principal moments of inertia I1, I2

and I3, and the vectors γ and r for the ball of radius R are related by

r = −Rγ − a.

To recover the motion of the Chaplygin top in absolute space, we need to supplement the
system (2.1) with equations describing the position of the center of mass of the ball (XC , YC) in
the plane (OXY ) and with equations for the orthogonal pair of unit vectors (α,β) lying in the
plane (OXY ) and defining (together with the vector γ) the orientation of the body in absolute
space [25].

ẊC = R(β,ω), ẎC = −R(α,ω),

α̇ = α × ω, β̇ = β × ω.
(2.2)

Relations (2.1) define a closed system of equations relative to the vectors M and γ. In the case
of an arbitrary parameter a, this system possesses only two integrals, the geometric integral and
the energy integral:

γ2 = 1, E =
1
2

M · ω − mg0r · γ,

and hence, the Euler – Jacobi integrability requires finding two additional first integrals and an
invariant measure.

In the six-dimensional phase space on the manifold given by the condition of constancy of two
integrals of motion, equations (2.1) define a four-dimensional flow. The value of the energy integral
E in this case can be regarded as another parameter of the system.

3. TRANSITION TO CHAOS VIA A SEQUENCE OF TORUS DOUBLING
BIFURCATIONS

A detailed analysis of the transition from order to chaos in the nonholonomic model of a
Chaplygin top using charts of Lyapunov exponents is presented in [2, 6]. Figure 4 presents the
fragment of interest on the chart of Lyapunov exponents on the parameter plane (E, a3); the other
parameters are fixed by the following values:

I1 = 2, I2 = 6, I3 = 7, a1 = 1, a2 = 1.5, g0 = 100, R = 3, m = 1. (3.1)

The wide strip denoted on the chart by the symbol Q corresponds to the region of stability of the
2-round torus T 2. In the Poincaré map F with a secant given by the condition γ1M2 − γ2M1 = 0,
to such a torus there corresponds an attractor consisting of two closed invariant curves, which in
turn are visited by the orbit of the Poincaré map. In what follows, for illustrative purposes, we
shall present fragments of Poincaré maps only in a neighborhood of one of two components of the
invariant curve T 2 (see, e.g., Fig. 4a).

We note that each of the components of the invariant curve T 2 contains two components of the
cycle of period 4, each of which for the fourfold iterated map F 4 is a fixed point of saddle-focus type
(1,2); the stable manifold of this point is one-dimensional and the unstable one is two-dimensional.
We denote this saddle-focus cycle (the point of period 4 for F ) by 4SF and two its components
lying inside the invariant curve of the fragment of the map by P and C. In accordance with the
scenario described in [20, 28], when the invariant curve T 2 breaks down and the one-dimensional
stable manifold intersects with the two-dimensional unstable manifold, a discrete spiral attractor
can arise, emanating from point 4SF.

Next, we fix the parameter a3 = 0.655 and carry out a one-parameter analysis of the system
from point A along the route AB on the chart of Lyapunov exponents, Fig. 4. As the value of
the energy parameter E increases, the invariant curve T 2 undergoes a cascade of torus doubling
bifurcations (invariant curves, in terms of the Poincaré map). Figures 4b and 4c show the phase
portraits of the attractor in the Poincaré map after the first and the second doubling, respectively.
Nowadays, in contrast to the cascade of period-doubling bifurcations of fixed points, the cascade
of torus doubling bifurcations is considered to be finite, that is, chaos arises after a finite number
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of torus doubling bifurcations [69, 70]. This cascade of period doubling bifurcations ends with the
emergence of an attractor of torus-chaos type [71, 72], see Fig. 4d.

We note that the attractor shown in Fig. 4d also contains 2 components (P and C) of the
periodic saddle-focus point 4SF. It is easy to see that the trajectories of the attractor do not visit
the neighborhood of points P and C.

Fig. 5. Graph showing the minimal distance δ from the points of the attractor to one of the components
of the saddle-focus depending on E. Typical portraits of the attractor for a Poincaré map with the secant
γ1M2 − γ2M1 = 0 at E ∈ {421, 422, 423, 424} are presented above.

As the parameter E is further increased, the attractor gradually begins to occupy the entire
internal region, which contains components of the cycle 4SF (see Fig. 5 above). The two-dimensional
unstable manifold of the cycle approaches the one-dimensional stable manifold. Such a proximity
can be estimated indirectly by constructing a graph of minimal distance δ from the points of the
trajectory on the attractor to one of the components of the saddle-focus cycle 4SF depending on
the energy parameter E. In the case where the manifolds begin to intersect (when the saddle-
focus acquires a homoclinic structure), such a distance tends to zero with increasing number of
iterations. The graph described above is shown in Fig. 5. A million iterations of the Poincaré
map were performed to obtain one point on the graph. Typical portraits of the attractors for
E ∈ {421, 422, 423, 424} are presented in the upper part of the figure. From the graph, one can see
2 pronounced minima corresponding to two different homoclinic situations. We consider each of
them separately.

4. DISCRETE SPIRAL CHAOS

4.1. A Homoclinic Discrete Spiral Attractor

As noted above, the region occupied by the torus chaotic attractor contains two fixed points,
P and C (see Fig. 4d), of the fourfold iterated Poincaré map F 4, each of which possesses a two-
dimensional unstable manifold and a one-dimensional stable manifold. It turns out that in such
a configuration the presence of a neighboring fixed point is crucial in ensuring that the trajectories
of the map return into the neighborhood of the initial fixed point, giving rise to a homoclinic
structure of the saddle-focus (1,2). Numerical experiments show that, in the area of the first
minimum of the graph shown in Fig. 5, at E =≈ 422.7, the stable invariant manifold emanating
from point P (in backward time) returns to point P after passing around point C along its unstable
manifold. Further behavior greatly depends on the value of the energy parameter. For example,
when E = 422.69, the stable manifold passes by point P on one side of its unstable manifold,
while when E = 422.71, it passes by point P on the other side. Thus, somewhere in this range
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the manifolds intersect, which implies the emergence of a homoclinic structure like that shown in
Fig. 2a. Using the bisection method, we have been able to localize the region of explicit existence of
the homoclinic situation to E ∈ [422.70065, 422.70070]. The presence of homoclinics was detected
by two visual signs:

• Approach of the stable invariant manifold to a fixed point along the two-dimensional unstable
manifold on a spiral trajectory, as shown in Fig. 2a;

• Appearance of typical increasing transverse oscillations as the fixed point itself is approached,
which is indicative of a transversal intersection of the manifolds (see again Fig. 2a).

Figure 6 shows invariant manifolds of the fixed point P for the fourfold iterated map F 4. When
these manifolds intersect, a typical homoclinic structure arises for E = Ehom = 422.70068.

Fig. 6. Intersection of the stable and the unstable manifold of point P (which is fixed for F 4).

Remark. One-dimensional invariant manifolds were calculated using an algorithm proposed
in [73]. The part of the two-dimensional unstable manifold that immediately adjoins the fixed
point was calculated as follows. On a small circle with its center at P, the plane of which coincides
with the plane given by two eigenvectors corresponding to complex eigenvalues, a grid was given
whose points were iterated several hundreds of times. The resulting grid of points was used to
construct an unstable invariant manifold.

Exactly the same homoclinic structure exists in a neighborhood of point C, but the homoclinics
of point C are mapped to the homoclinics of point P within two iterations of the Poincaré map
(we recall that the phase portraits show only one half of the attractor of period 2). This means
that the homoclinic attractor has period 4 (that is, it consists of four subsets which map into each
other in turn). Figure 7a shows a phase portrait of the attractor, and Figure 7b presents the same
attractor, but shows only each fourth iteration, which corresponds to the attractor in the map F 4.
It can be seen that only one of the fixed points belongs to such an attractor; the neighborhood of
the other point is empty.

It should be noted that in a neighborhood of the above-mentioned homoclinic structure in the
parameter E there exists many other homoclinic situations which apparently differ by the number
of rotations executed by the stable invariant manifold around the fixed points P and C until it
intersects with the unstable manifold. Note also that the attractor arising from each such structure
is a discrete spiral attractor.

The spectrum of Lyapunov exponents for the homoclinic discrete spiral attractor is (Λ1 =
0.0218,Λ2 = 0.0000,Λ3 = −0.113). The estimate of the correlation dimension of the attractor in the
Poincaré section Dcor = 2.12 ± 0.03 agrees fairly well with the estimate of the Lyapunov dimension
made by the Kaplan – Yorke formula: DK−Y = 2 + Λ1/|Λ3| ≈ 2.19.
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(a)

(b)

Fig. 7. Phase portraits of a homoclinic discrete spiral attractor for E = Ehom = 422.70068 on the Poincaré
map with the secant M1 = 0: (a) portrait showing each iteration of the map (b) portrait showing each fourth
iteration.

4.2. A Heteroclinic Discrete Spiral Attractor

A different homoclinic situation arises for values of the parameter E that correspond to the right
minimum in Fig. 5, which is much more pronounced than the left one. The results of numerical
experiments show that when E = Ehet = 423.59597843, the one-dimensional stable manifold of
the fixed point C of the map F 4 enters the neighborhood of the fixed point P and is visually
superimposed onto the two-dimensional unstable manifold of this point (see Fig. 8), forming a
heteroclinic contour connecting two fixed points of saddle-focus type (1,2) for the map F 4.

It should be noted that the homoclinic structure in the case at hand arises from points P
and C, which belong to the same limit cycle of system (2.1), and hence the arising structure is,
strictly speaking, homoclinic. However, for the map F 4 this intersection is formally heteroclinic,
and the attractor on the Poincaré map (see Fig. 9a) is visually similar to the heteroclinic spiral
attractor [45, 74], with the essential difference that it is discrete.
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Remark. In order to show that the arising attractor is indeed a discrete spiral attractor, we have
numerically found a value of the parameter E at which a heteroclinic structure connecting two fixed
points P and C arises in the map F 4. The search algorithm involved localizing the corresponding
value of the energy parameter above and below by the deviation of the one-dimensional stable
manifold of point C from the spiral along which it must converge (in backward time) on the
two-dimensional unstable manifold of point P . In one case it deviated towards the center of the
spiral, in the other case it deviated outside. After the required value had been localized, it was
determined more precisely by the bisection method. Figure 8 shows the one-dimensional stable
manifold of the fixed point C for the best estimate obtained for the value of the energy parameter,
E = Ehet = 423.59597843: the manifold lies visually in the two-dimensional unstable manifold of
point P .

Fig. 8. At E = Ehet = 423.59597843, the one-dimensional stable manifold of the fixed point C of the map F 4

is visually superimposed onto the two-dimensional unstable manifold of point P .

We note that the behavior of the manifolds of the saddle-focus point 4SF of the map F 4 in
the case at hand is very similar to the behavior of separatrices in systems with continuous time
when homoclinic bifurcations of equilibria arise. Figure 8 shows that the stable and the unstable
manifold do not intersect, but coincide; moreover, there are no typical oscillations increasing as the
manifolds approach the saddle-focus point.

We can offer the following explanation for this phenomenon. It turns out that the saddle-
focus cycle of period 4 4SF arises quite nearby, as the energy decreases to E = EPD ≈ 424.629,
from the saddle-focus cycle (1,2) of period 2 (2SF), which, after a period doubling bifurcation,
is of type (2,1). Immediately after the bifurcation the multipliers of cycle 2SF are equal to
(1.0022,−0.9111,−0.9965), which is very close to the triplet (1,−1,−1). As shown in [75, 76],
the second iteration of the three-dimensional Poincaré map near such a point must be close to the
map along the trajectory for some three-dimensional flow. That is, the map F 4 in a neighborhood
of the saddle-focus fixed point 4SF can indeed be well approximated by the three-dimensional flow.

Figure 9a shows a phase portrait of a heteroclinic discrete spiral attractor for E = Ehet =
423.59597843 on the Poincaré map, where both elements of the cycle of period 4 are seen to
belong to the attractor. Figure 9b shows the one-dimensional stable manifolds of points P and C,
which form a heteroclinic structure.

The spectrum of Lyapunov exponents in the Poincaré section for a discrete spiral attractor is
(Λ1 = 0.0194,Λ2 = 0.0000,Λ3 = −0.1116). In addition, an estimate of the correlation dimension
of the attractor in the Poincaré section has been obtained: Dcor = 2.10 ± 0.03, which agrees
fairly well with the estimate of the Lyapunov dimension made by the Kaplan – Yorke formula:
DK−Y = 2 + Λ1/|Λ3| ≈ 2.17.
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(a)

(b)

Fig. 9. (a) Phase portrait of a heteroclinic discrete spiral attractor and (b) arrangement of the one-dimensional
stable manifolds of components P and C of the saddle-focus cycle of period 4 on the secant M1 = 0 for
E = Ehet = 423.59597843.

5. ROLLING OF A CHAPLYGIN TOP IN ABSOLUTE SPACE
Let us examine the motion of a Chaplygin top, which corresponds to a discrete spiral attractor,

in absolute space. For this, we supplement the system (2.1) with equations for the position of the
center of mass and the orientation of the ball (2.2). Figure 10a shows the trajectory of the contact
point of the Chaplygin top started from the saddle-focus point 4SF. Figures 10b show the trajectory
of the contact point of the top for a heteroclinic discrete spiral attractor presented in Fig. 9a.

The behavior of the contact point of the top on the saddle-focus point 4SF is quasi-periodic. On
the discrete spiral attractor, a chaotic component manifests itself in the behavior of the contact
point; however, it is almost impossible to detect it visually. The contact point fills, as before, an
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(a) E = Ehet = 423.59597843 (b) E = Ehet = 423.59597843

Fig. 10. Trajectory of the contact point of the Chaplygin top for different dynamical regimes: (a) the saddle-
focus point 4SF from which a heteroclinic discrete spiral attractor has arisen, (b) the heteroclinic discrete
spiral attractor shown in Fig. 9a.

annulus in the plane, and the appearance of the chaotic component cannot be detected by the
harmonic analysis technique applied by the authors. The Fourier spectrum does not differ from the
discrete one within the accuracy of calculations.

The trajectories of the point of contact shown in Fig. 10 have been calculated without taking
into account the loss of contact of the body with the surface, which is highly probable when the
center of mass is displaced. This is due to the fact that the loss of contact in such systems leads to
paradoxical situations [80, 81] and requires a separate analysis.

6. CONCLUSION

To conclude, we present some considerations regarding the behavior of the contact point of the
Chaplygin top, which are partially hypothetical in nature. In the case of zero displacement of the
center of mass (the Chaplygin ball), the contact point undergoes a directed drift for almost all
initial conditions, and its behavior is regular (for a proof, see [5]). In the case of displacement of the
center of mass, but in the absence of a gravitational field, the trajectory of the contact point tends,
as a rule, to quasi-periodic final motion, which is defined by simple attractors in the reduced phase
space [13]. When a gravitational field is added, multistability breaks down and chaotic (including
strange) attractors appear which occupy a much larger part of the phase space.

However, not for all complex attractors the trace of the contact point is distinctly chaotic
in nature and admits diffusion or drift. Strange as it may seem, a substantial number of higher
frequency harmonics are suppressed. As a result, the difference of the motion of the contact point
from the quasi-periodic motion is insignificant and hence can hardly be detected in a natural
experiment. In this sense, it would be interesting to explore other chaotic attractors which are
typical of the system considered and can lead to a high degree of chaotization of the contact
point. It is possible that the nonholonomic dissipation discussed in the introduction prohibits
the realization of many attractors having strongly chaotic dynamics. In particular, the question
remains open whether the system under study has hyperchaotic attractors (with two positive
Lyapunov exponents) similar to those presented in [19] or [77–79]. As already noted in [2], it
would be interesting to make a physical prototype of the ball which could exhibit the phenomena
of reversal and strong chaotization of dynamics.
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79. Stefański, K., Modelling Chaos and Hyperchaos with 3-D Maps, Chaos Solitons Fractals, 1998, vol. 9,
nos. 1–2, pp. 83–93.

80. Ivanov, A. P., On Detachment Conditions in the Problem on the Motion of a Rigid Body on a Rough
Plane, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 355–368.

81. Ivanov, A. P., Geometric Representation of Detachment Conditions in Systems with Unilateral Con-
straints, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 435–442.

REGULAR AND CHAOTIC DYNAMICS Vol. 21 Nos. 7–8 2016


