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Abstract

We suggest a new technique of fold Poincaré section, allowing one
to visualize an invariant curve of a multi-frequency invariant torus in
a physical experiment. Details of the technique are presented, along
with examples of its application to various experimental studies. Ex-
amples of how an invariant curve is visualized in double-, triple- and
four-fold Poincaré sections are shown.
Keywords: quasiperiodic oscillations; invariant curve; fold Poincaré
section.

1 INTRODUCTION

Quasiperiodic oscillations are widespread in science and engineering [1], [2],
[3], [4]. One can find numerous examples in electronics, radio-engineering,
biophysics, climatology, and astrophysics. Quasi-periodic oscillations can be
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classified according to the number of independent incommensurable frequen-
cies. The representation of quasi-periodic oscillations in phase space is an
invariant torus. The dimension of a torus is equal to the number of in-
commensurable frequencies [5], a two-frequency torus being embedded into
3D space, three-frequency into 4D space etc. Spectra of the oscillations of
such kind exhibit a complex structure and contain not only a set of basic
frequencies, but also a set of their harmonics. The problems related to the
generation of quasi-periodic oscillations, to their control by external driving,
and to mutual synchronization of quasi-periodic oscillations are difficult, and
an important advancement of the theoretical description of these phenom-
ena was accomplished recently [5], [7], [6], [8], [9], [10], [11], [12], [13], [14],
[15], [16]. One of the problems in studying multi-frequency quasi-periodic
oscillations is their diagnostics. A traditional technique motivated from the
physical point of view is the Fourier spectrum analysis. For two-frequency
quasi-periodicity this technique is quite suitable, but for higher-dimensional
oscillations Fourier spectrum becomes more complex due to a big number of
harmonics. Another technique which arises from theory of dynamical chaos is
the analysis of the spectrum of Lyapunov exponents. These exponents char-
acterize the presence (absence) of the divergence of close phase trajectories
[17]. Thus, for a system exhibiting chaotic oscillations, at least one Lyapunov
exponent in the spectrum is positive. For quasi-periodic oscillations, several
Lyapunov exponents become zero, and the number of zero Lyapunov expo-
nents corresponds to the number of incommensurable frequencies. However,
the process of calculating the complete spectrum of Lyapunov exponents with
good accuracy takes a long time. Moreover, this technique is not applicable
to experimental data since one can reliably detect only the largest Lyapunov
exponent from a time realization.

Another technique is the construction of Poincaré section. For numerical
simulations, it consists in finding points of intersection of a phase trajectory
with some hyper-surface of the dimension less than the dimension of the
phase space. An attractor corresponding to two-frequency quasi-periodic
oscillations is a two-dimensional torus. Therefore, its intersection with a
plane is an oval which is called an invariant curve.

Such diagnostics is very useful both for theoretical (or numerical) and
experimental studies. However, an arousal of additional incommensurable
frequencies blurs an invariant curve. In this case, the technique of the fold
Poincaré section can be applied, which is the double Poincaré section in the
simplest case. A three-frequency torus in the Poincaré section gives a set of
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points forming an invariant curve (torus) in 3D space. This invariant curve
can be intersected by a plane, and it gives an invariant curve in the double
Poincaré section. We have to note that this set of points is discrete and does
not coincide with an intersection plane. Therefore, in numerical calculations
one needs to fix points inside some thin slice in such a case. Examples of
using the double Poincaré section in theoretical studies can be found in Refs.
[18], [19], [20]. As well, we have to note that the problems of multi-frequency
oscillations are very difficult and a researcher should use different techniques
which supplement each other [5], [7], [6], [8], [9], [10], [11], [12], [13], [14],
[15], [16].

As for the experimental studies of multi-frequency quasi-periodicity, the
Fourier spectrum analysis is typically used. We can mention Ref. [7] where
the spectrum was simple enough and theoretical simulations of the system
were realized. Combination of these approaches allowed one to identify new
spectral components sufficiently easily. In Ref. [21], an algorithm allow-
ing one to construct a parameter plane in an automatic regime and to dis-
tinguish between different kinds of dynamics including two-frequency and
three-frequency quasi-periodicity was suggested on the basis of the Fourier
spectrum analysis. In Ref. [22], the authors have constructed a phase map
using an experimental time series. Quasi-periodic oscillations can be distin-
guished by this map. As for the technique of the fold Poincaré section, there
is no experimental technique, where it is realized. We can mention only Refs.
[23], [24], where mechanical systems vibrating in the external field were an-
alyzed. In that paper the double Poincaré section was realized and plane of
section was fixed by frequency of external action.

In the present paper the technique for diagnostics of multi-frequency
quasi-periodic oscillations using the fold Poincaré sections is suggested and its
applications to different electronic circuits are presented. The paper consists
of three sections. In Sect. 2 the technique for construction of an invariant
curve in the fold Poincaré section is described in detail for a generalized six-
dimensional model with five frequencies, which can realize fourfold, triple
and double Poincaré sections. In Sect.3 three applications of the technique
to non-autonomous and autonomous coupled generators are given.
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2 Technique for visualization of invariant curve

in fold Poincaré section

The main idea of the construction of Poincaré section is to trace the values of
several dynamical variables at a certain time instant. The Poincaré section
is most easily realized in non-autonomous systems, as there is a time scale
corresponding to the period of an external force. In this case one can use
the so-called stroboscopic section, in this case section plane should be chosen
through period of external action. In an experiment it is realized in the
following way. A signal of an external force from a standard generator of
harmonic oscillations is applied to an autonomous system. The same signal is
applied to an external trigger input of a pulse generator. Dynamical variables
of the autonomous system are fed to inputs X and Y of an oscilloscope
working in the X-Y regime. On the screen of the oscilloscope a projection of
phase portrait on the plane (X, Y) is formed. Short pulses from the output of
a pulse generator are fed to input of external lighting of image of oscilloscope.
Varying brightness of the beam of oscilloscope, one can observe a projection
of a phase portrait on the screen of oscilloscope and its stroboscopic section.
An attractor in a stroboscopic section is formed in that way on the screen of
the oscilloscope. Such a technique for visualization of an invariant curve was
realized in Refs. [23], [24], [25].

In the case of a two-dimensional torus in the Poincaré section, one can ob-
serve an invariant curve. It will change at varying of controlling parameters
and one can talk about evolution of quasi-periodic oscillations. If the curve
transforms into a discrete set of points, then we can talk about synchroniza-
tion on a torus. If a sharp curve appears, one can suggest the presence of a
strange non-chaotic attractor [26], [27], [28]. If curve is blurred, then it can
represent a transformation to three-frequency torus or transition to chaos.

If number of frequency components increases we have to realize double,
triple or more Poincaré section in the system under study, in order to visualize
invariant curve. For non-autonomous system it means that number of exter-
nal forces is increased. For visualization of invariant curve in fold Poincaré
section one should find time instant when periods of different external forces
are coincident. We should notice that the probability of coincidence of pulses
in the scheme is small enough, and it decreases with increasing of fold of
section. As the result, the time intervals between pulses occurring in the
scheme output become large. And one can not see fold Poincaré section on

4



ExtTrig

Output ExtTrig

Output

Object
of

research

Input-
Output
Device

Generator of pulses

Gate
circuit

PC/Oscilloscope

X1

X2

X3

X4

X5

X6

X1

X2

X3

X4

X5

X6

X3

X4

X5

X6

Figure 1: Principle scheme for realization of four-fold Poincaré section

the screen of oscilloscope. Then one can use a personal computer (PC) with
input-output analog signals. In our experiment we use PC with IO analog
signals NI USB-6211.

The situation is more complicated in the case of studying an autonomous
system. For constructing of one-dimensional Poincaré section one should
choose fixed value of dynamical variable. When dynamical variable reaches
out this value, then stroboscopic pulse is formed and light on certain point
of phase portrait on the screen of oscilloscope (or it can be written to PC). If
we talk about multi-dimensional Poincaré section, then we have to determine
the moment, when several dynamical variables reach out some fixed values.
In Fig. 1 principle scheme allowing to realize four- fold Poincaré section is
shown (in Appendix A1 one can find values of the all elements of the gate
circuit). The minimal dimension of phase space of such system has to be
six, and maximal number of frequencies equals to five. Dynamical variables
X1, X2, X3, X4, X5, X6 are applied to the input of input-output device for
recording to the PC, and variables X3, X4, X5, X6 are applied to the inputs
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Figure 2: Scheme of the gate circuit

of gate circuit, which formed controlling pulses for recording of date. In Fig. 2
structure of gate circuit, providing realization of four-fold Poincaré section
is shown. Gate circuit represents the set of comparators of voltage (DA1-
DA4), in inputs of which go the corresponding dynamical variables X3, X4,
X5, X6. Potentiometers R1-R4 determine operational thresholds. Until value
of dynamical variable is less than the threshold value, voltage on the output
of comparator is equal to −Epit. At the moment when dynamical variable
reaches out threshold value, then comparator switches to state when voltage
on the output of comparator is equal to +Epit. Positive drops of voltage, cor-
responding to reach out of dynamical variable determined by potentiometers
R1-R4 values, are applied to inputs of formers of short pulses realized on the
logic elements DD11-DD42 with chains R13C1-R16C4. Consequently the part
of scheme, including elements DA1-DA4, R1-R4, DD11-DD41, R13C1-R16C4

and DD12-DD42 provides formation of short pulses at the moment, when
dynamical variables reach out threshold values. In experiment, pulse width
was the same for different variables and equal to 1/100 of the least period of
oscillations of self-generators. Definition of the moment, when these events
occur simultaneously is provided by logical gate DD31 and reverser DD32.
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At the moment when all dynamical variables reach out threshold values to
all inputs DD31 rectangle pulses (logical units) are applied, consequently in
output DD31 one pulse occurs. Further, the pulse output from the gate cir-
cuit is applied to the input of the external trigger standard pulses generator,
on the output of which rectangle pulse with parameters necessary to run
input-output devices is formed. At the moment of arrival of the pulse input
to the external trigger input and output devices the instantaneous values of
dynamical variables are read. These variables are transmitted to the PC,
where invariant curve is visualized. By means of a time shift between output
and trigger pulses, one can displace the cross sections of the attractor in the
projection and choose more clear option.

Using switches K1-K4 in gate circuit, we can change fold of Poincaré
section from single to four-fold and also we can observe sections by different
variables. This circuit allows one to observe invariant curve in four-fold
Poincaré section for five-frequency torus. Visualization of invariant curve
was realized in PC with using software LabView. In LabView we can limit
parameter Time, which is responding for time of producing and processing
of the data. The gate circuit can be extended for system of any dimension
and any number of frequencies. But one should understand that increasing of
section fold entails increasing of time observation and getting of experimental
data. In the experiment for constructing four-fold Poincaré we set parameter
Time equal 20 minutes.

3 Examples of applying the technique of fold

Poincaré section for different kind systems

3.1 Non-autonomous nonlinear oscillator

From the beginning we consider the simplest case, when an object under
study is a non-autonomous system. We consider nonlinear oscillatory RLD-
circuit excited by the signal representing the sum of three harmonic com-
ponents A1 sin(ω1t), A2 sin(ω2t) and A3 sin(ω3t). Accordingly, we deal with
dynamical system with five-dimensional phase space and three independent
frequencies. The circuit scheme is shown in Fig. 3. In Appendix A2 one can
find all parameters of elements. Values of frequencies of external force were
chosen in the following way: ω1 was close to linear resonance frequency of
oscillatory circuit and equals 51 kHz, ω2 = k2ω1, ω3 = k3ω1, where k2 and k3
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Figure 3: Scheme of electronic circuit of the RLD-contour

are irrational numbers, which represent solutions of minimal polynomial of
second and third degree: k2 =

√
5−1
2

, k3 = 1.324718 [29]. At A1 ̸= 0, A2 ̸= 0
and A3 ̸= 0 three-frequency torus can be realized in the studying system. In
order to visualize invariant curve of three-frequency torus we have to realize
double Poincaré section. As the section variable we use second and third
frequencies (ω2t and ω3t correspondingly). Character of oscillations was an-
alyzed by projection of phase portrait on plane (A1 sin(ω1t), iD), where iD is
intensity of diode current and A1 sin(ω1t) represents phase of corresponding
harmonic of external force. In Fig. 4 one can find examples of attractors in
double Poincaré section in projection on this plane. We use projection on
this plane due to the fact that this plane shows the dependence of behavior
of dynamical variable on the phase of external action. If we observe smooth
invariant curve then we can talk about stability of dynamics. Appearance
of breaks and blurring on phase portrait indicates local instability and in
general the presence of phase-dependent dynamics.

A phase portrait in Fig. 4a corresponds to smooth three-frequency torus.
Some blurring of attractor in Poincaré section is caused by the finite time
interval of coincidence, which is limited by twice length of the pulses in the
gate circuit. In our experiment this interval was limited by 0.5 µSec. Phase
portrait in Fig. 4b corresponds to double three-frequency torus. Dynamical
regime in Fig. 4c corresponds to quadruple three-frequency torus. In double
Poincaré section it can be four close invariant curves or it can be embedded
four times invariant curve. In Fig. 4d chaotic oscillations occurring via torus
break down are illustrated.

In Figs. 4e-h, Fourier spectra are shown for three-frequency quasi-periodic
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torus, for doubled torus and for chaotic oscillations. As one can see, it is suf-
ficiently difficult to distinguish this different kind of dynamics by spectrum,
but fold Poincaré section allows one to distinguish it with a good accuracy.

3.2 Two coupled generators of quasi-periodic oscilla-
tions

Now we apply the technique of visualization of invariant curve in fold Poincaré
section for autonomous system (without external action). We consider two
coupled generators of quasi-periodic oscillations. In Refs. [30], [31] the mod-
els of generators of quasi-periodic oscillations with minimal dimension of
phase space (N = 3) was suggested. In [32] an electronic circuit implement-
ing generator of such kind was realized and for this generator two-frequency
quasi-periodic oscillations were observed.

In Fig. 5a the scheme of electronic circuit of generator of quasi-periodic
oscillations is shown. The generator represents classical oscillator with induc-
tive feedback based on the two gate field effect transistor. It includes active
oscillator consisting of inductor L1, capacitor C1, nonlinear elements repre-
sented by back-to-parallel linked semiconductors diodes (D1-D4) and of field
effect transistor T1, and control circuit. The control circuit consists of multi-
plier DA4 and integrator DA3. The potential outputted of integrator U1g2 is
applied at the second gate of field effect transistor. The control parameters
of this generator are defined by the resistances R8 and R12, which regulate
integration time of the amplifier DA3 and amplitude of self-oscillating of
active oscillator by way of changing of the additional voltage U0.

We consider two coupled generators. This generators were identical. Val-
ues of the elements on the Fig.5 a are presented in Appendix A3. In Fig. 5b
one can see function diagram of experimental circuit, including two genera-
tors, gate circuit, input-output devices and PC. The dynamical variables are
voltage of each oscillate contours U1, U2 and their derivative U̇1, U̇2, and also
voltage on the second gate of the field effect transistors U1g2, U2g2. Coupling
between oscillators is resistive, realized by resistor RC . Thus, the system has
six-dimensional phase space and four independent frequencies. At small cou-
pling the four-frequency quasi-periodic oscillations are possible. In order to
visualize invariant curve of this torus it is necessary to realize triple Poincaré
section.

The feature of the present system is that each oscillator has three dynam-
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ical variables, and two of them U1 and U̇1 are fast enough, and the third U1g2

corresponds to relaxation oscillations and it is slow enough. At one period
of relaxation oscillations there are 60 oscillations of self-generators. In order
to visualize invariant curve of four-frequency torus we should realize triple
Poincaré section. If we realize Poincaré section by derivative of one of vari-
ables, then dynamics of these variables will be limited. It is more reasonable
to make cross-section by variables of one coupled subsystem and to observe
for variables of another subsystem. In our case it has to be cross-section by all
variables of the one generator. But in this case we have problem connected
with relaxation character of one variable on the second gate of field effect
transistor, since this variable is very slow and we cannot visualize invariant
curve of four-frequency torus in triple Poincaré section.

However, we can choose parameters of generators and visualize invari-
ant curve of two-frequency oscillations corresponding to the regime of phase
synchronization of quasi-periodic oscillations [6], [32] and realize double and
triple Poincaré section. Figure 6 shows phase portrait in Poincaré section on
plane (U1, U̇1) in single Poincaré section (Fig. 6a) and in double Poincaré
section (Fig. 6b). As one can see, invariant curve in this case is vanishing,
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but in double section there is a fixed point. Consequently, if one realize k-fold
Poincaré section for a system with k-frequency torus, then one will get fixed
point in the Poincaré section. Such approach can be applied for detecting
bifurcation lines on the parameter planes for systems with multi-frequency
quasi-periodic oscillations.

3.3 Five coupled van der Pol oscillators

In connection with the problem occurring at visualization of four-frequency
torus in six-dimensional system, we consider the system of five coupled os-
cillators. Each oscillator is characterized by two phase variables and one
frequency of own oscillations. Therefore, we deal with ten-dimensional sys-
tem and with five incommensurable frequencies. In Fig. 7c the functional
diagram of electronic circuit is presented. In Fig. 7a one can see the scheme
of electronic circuit of one generator of van der Pol type. Each generator
consists of an oscillatory circuit formed by inductors L1 and capacitors Ci (i
is number of oscillator), and of nonlinear elements represented by back-to-
parallel linked semiconductor diodes (D1-D2). In Fig. 7b the voltage-current
characteristic of the combined resistance composed of a linear negative con-
ductance realized by an operational amplifier and a bidirectionally connected
diodes is shown. Oscillators are differ only by frequencies. All another pa-
rameters is identical for each oscillator and can be find in Appendix A4.
Frequency mismatch between frequencies of oscillators was realized by differ-
ent capacity of capacitors Ci. Excitation of the self-oscillations occurs due to
the negative resistance blocks (R1) assembled on the operational amplifiers
(DA11). R2 and R3 represent negative feedback circuit of operational am-
plifier DA11. Varying resistance of the resistor R2 we can change coefficient
of amplifier. The dynamical variables are voltage outputs from operational
amplifiers (DA11), and its derivative, formed by derivative amplifiers (DA12).
The coupling between the generators is provided by variable resistor Ri,i+1,
i = (1 ÷ 5), connecting identical points of the two circuits, and we consider
the system with ring coupling, R56=R51 (Fig. 7c). The strength of coupling
is inversely proportional to the resistor. Dynamical variables X, Ẋ, Y , Z,
W , V input to IO device and variables Ẏ , Ż, Ẇ , V̇ input to gate circuit.

At small coupling the system demonstrates five-frequency quasi-periodic
oscillations. With increasing of coupling the one of the frequencies will be
locked and we can observe transition from five-frequency torus to the four-
frequency torus and the three-frequency torus. In order to distinguish quasi-
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Poincaré section.

14



periodic oscillations with different number of frequency components we ap-
ply technique of visualization of fold Poincaré section. For visualization of
invariant curve of five-frequency quasi-periodic oscillation we should realize
four-fold Poincaré section. In order to escape situation which occurred in the
case of two coupled generators of quasi-periodic oscillations we will analyze
dynamical variables of the one of oscillators (X, Ẋ) and one of variables of
another oscillators (Y , Z, W , V ), and realize Poincaré sections by derivatives
of another variables (Ẏ , Ż, Ẇ , V̇ ). In Fig. 7c one can see function diagram
of experiment circuit. Using switches K1-K4 in gate circuit, we can change
fold of Poincaré section from single to four-fold.

In Figs. 8-10, different examples of the phase portraits in fold Poincaré
sections are shown for system of five coupled oscillators.

In Fig. 8, fold Poincaré sections of phase portrait of five-frequency quasi-
periodic torus are shown. Figure 8a represents original two-dimensional pro-
jection of phase portrait on the dynamical variables of the first generator (X,
Ẋ), Figs. 8b-e represent single (by section hyper surface Ẏ = 0), double (by
section hyper surface Ẏ = 0, Ż = 0), triple (by section hyper surface Ẏ = 0,
Ż = 0, V̇ = 0) and four-fold (by section hyper surface Ẏ = 0, Ż = 0, V̇ = 0,
Ẇ = 0) Poincaré section in projection on the same plane. In Fig. 8e one can
see invariant curve and identify five-frequency quasi-periodic regime.

In Fig. 9, fold Poincaré sections of phase portrait of four-frequency quasi-
periodic torus are shown. Figure 9a corresponds to the single Poincaré sec-
tion, and Figs. 9b and c to the double and triple sections. In the triple
Poincaré sections one can observe clear invariant curve.

For the system of five coupled oscillators in experiment bifurcation of dou-
bling of three-frequency torus at varying of control parameters was observed.
In Fig. 10, transformation of phase portraits corresponding to this bifurca-
tion is shown. In Fig. 10, phase portraits are indicated by red color (colored
on-line) and invariant curves in double Poincaré section are indicated by blue
color. Figure 10a corresponds to the situation before bifurcation and Fig. 10b
corresponds to the situation after bifurcation. As one can see, invariant curve
very-well demonstrates such kind of transformation.

4 Conclusion

Thus, the technique of visualization of invariant curve in the fold Poincaré
section is effective technique for diagnostic and distinguishing multi-frequency
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16



-2

-1

0

1

2

-1 0 1

X

X
.

a)

-2

-1

0

1

2

-1 0 1

X

X
.

b)

-2

-1

0

1

2

-1 0 1

X

X
.

c)

Figure 9: Phase portraits of four-frequency torus of five coupled oscillators
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quasi-periodic oscillations. The technique has good relevance for studying
non-autonomous systems. In case of autonomous systems, the technique can
be applied to systems satisfying the condition of N = 2F , where N is di-
mension of phase space of the system and F is the number of frequencies of
the system. The condition allows one to realize procedure of fold Poincaré
section correctly.

In the present paper we have shown the examples of four-fold Poincaré
sections, but such technique can be generalized to any number of frequencies.

This research was supported by the Grant of Russian Scientific Foundation
(Project 14-12-00291).

5 Appendix A

Parameter values of elements of electronic circuits, which were used in the
experiments.

A1. Gate circuit (Fig.2)
R1=10 kΩ, R2=10 kΩ, R3=10 kΩ, R4=10 kΩ,
R5=10 kΩ, R6=10 kΩ, R7=10 kΩ, R8=10 kΩ,
D1-D4 are semiconductors diodes KD522,
R9=10 kΩ, R10=10 kΩ, R11=10 kΩ, R12=10 kΩ,
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C1=12 pF , C2=12 pF , C3=12 pF , C4=12 pF ,
R13=100 kΩ, R14=100 kΩ, R15=100 kΩ, R16=100 kΩ,
C=100 pF , R17=100 kΩ, R18=10 kΩ, R19=1 kΩ.
A2. Non-autonomous RLD-contour (Fig.3)
R1=10 kΩ, R2=10 kΩ, R3=10 kΩ, R4=10 kΩ,
L=30 mH, R6=50 Ω,
D is semiconductors diode KD522.
A3. Generator of quasi-periodic oscillations (Fig. 5a)
R1=10 kΩ, R2=10 kΩ, R3=1 kΩ, R4=10 kΩ,
R5=1 kΩ, R6=620 Ω, R7=1 kΩ, R8=100 kΩ,
L1=100 µH, C1=510 nF , C3=1000 nF , C4=22 nF ,
R9=200 Ω, R10=620 Ω, R11=10 kΩ, R12=10 kΩ,
D1-D4 are semiconductors diodes KD522,
T1 is field-effect transistor.
A4. Generator of van der Pol type (Fig. 7a)
L1=250 mH,
C1=1000 pF , C2=680 pF , C3=510 pF , C4=330 pF , C5=220 pF ,
R1=62 kΩ, R2=20 kΩ, R3=1 kΩ, R4=1 kΩ,
C6=1000 pF , R5=620 Ω, R6=10 kΩ, R7=1 kΩ.
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