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Abstract—We investigate strange nonchaotic self-oscillations in a dissipative system consisting
of three mechanical rotators driven by a constant torque applied to one of them. The
external driving is nonoscillatory; the incommensurable frequency ratio in vibrational-rotational
dynamics arises due to an irrational ratio of diameters of the rotating elements involved. It is
shown that, when losing stable equilibrium, the system can demonstrate two- or three-frequency
quasi-periodic, chaotic and strange nonchaotic self-oscillations. The conclusions of the work
are confirmed by numerical calculations of Lyapunov exponents, fractal dimensions, spectral
analysis, and by special methods of detection of a strange nonchaotic attractor (SNA): phase
sensitivity and analysis using rational approximation for the frequency ratio. In particular,
SNA possesses a zero value of the largest Lyapunov exponent (and negative values of the other
exponents), a capacitive dimension close to 2 and a singular continuous power spectrum. In
general, the results of this work shed a new light on the occurrence of strange nonchaotic
dynamics.
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1. INTRODUCTION

A strange nonchaotic attractor (SNA) is a fundamental type of attractive sets of dynamical
systems which manifest a contradictory combination of properties of order and chaos [1]. It
possesses a nonsmooth, fractal-like geometrical structure [2, 3] and a singular continuous power
spectrum [4–6], but shows no exponential divergence of trajectories and no positive Lyapunov
exponents. SNA were first introduced in 1984 (see reference [7]) and since then they have been
widely studied theoretically, numerically [8–21] and experimentally [22–27] in relation to nonlinear
dynamical systems driven by quasiperiodic external force (e. g., superposition of two and more
harmonic signals with fixed irrational frequency ratios). On the other hand, any attempts to observe
strange nonchaotic self-oscillations, where the incommensurable frequencies would be produced
due to internal properties of the system in the absence of external quasi-periodic forcing, were
not successful [28–30]. Thus, the question of the possibility of occurrence of strange nonchaotic
self-oscillations remained unsolved.

An example of a self-oscillatory dissipative system of mechanical nature, which manifests
strange nonchaotic oscillations operating due to supplied constant torque was first presented in
our paper [31]. The model system is composed of three disks 1–3 mounted vertically as shown
in Fig. 1. The ratio of radii of the disks 1 and 2 connected through the friction transmission is
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AUTONOMOUS STRANGE NONCHAOTIC OSCILLATIONS 211

defined by an irrational number ρ = r1/r2. The condition of motion without slip of the rotating
disks is expressed by the relation to the angular coordinates θ2 = ρθ1 + const and to the angular
velocities θ̇2 = ρθ̇1. The motion is provided by a constant (not varying in time) torque applied to
one of the disks. So the external force is not oscillatory, and the system must be regarded as an
autonomous one. Components of the motion with incommensurable frequencies emerge due to a
specially selected irrational ratio of sizes of the rotating elements involved. In addition, the disk
1 undergoes viscous friction under rotation, proportional to its angular velocity, and there is also
viscous friction between the disks 1 and 3. So the system is dissipative and possesses attractors in
the phase space. It was shown that the system can manifest two- and three-frequency quasi-periodic,
chaotic and strange nonchaotic types of vibrational and rotational dynamics.

In this paper we expand the results of [31]. We provide extensive theoretical and numerical
studies both of the complete (4D) mechanical system and of its reduced (3D) mathematical
model. The numerical studies include computation of Lyapunov exponents of the attractors, their
fractal dimensions and exponents of phase sensitivity, and a detailed analysis of power spectra
of oscillations. We present charts of dynamical regimes in different sections of the parameter
space of the model system and dependencies of the Lyapunov exponents on parameters. Based
on these results, we analyze dynamical transitions between the dynamical regimes and underline
the typicality of certain types of oscillations in the corresponding regions of the parameter space.
Results of the present paper shed a new light on the problem of existence of SNA in autonomous
systems.

Fig. 1. A schematic image of the mechanical system in which an SNA can be realized.

2. ORIGINAL MECHANICAL SYSTEM AND REDUCED DYNAMICAL MODEL

Let us consider a system of three disks (1, 2, 3), see Fig. 1, two of them are coaxial (1 and 3) and
undergo viscous friction, which is proportional to the mutual angular velocity. The motion of the
system is provided by constant driving torque applied to the disk 1, whose edges come into contact
with those of the disk 2, so that a frictional transmission of rotation occurs without slipping. Besides,
the disk 1 undergoes viscous friction itself during rotation proportional to its angular velocity. For
simplicity, let us assume that the inertial properties of the system are supplied entirely by the point
masses m1, m2 and m3 attached to the disks at distances from the axes, respectively, l1, l2 and l3. In
essence, this is a system of pendulums with an imposed mechanical constraint. The relation of radii
of the disks 1 and 2 linked by the frictional transmission is supposed to be an irrational number,
specifically, we set ρ = r1/r2 = (

√
5 + 1)/2. Taking into account the relationships θ2 = ρθ1 + u and

θ̇2 = ρθ̇1, we can write the Lagrangian function of the system as one depending only on the angle
coordinates θ1,3 and velocities θ̇1,3:

L =
1
2
m1l

2
1θ̇

2
1 +

1
2
m2l

2
2ρ

2θ̇2
1 +

1
2
m3l

2
3θ̇

2
3 + m1l1g cos θ1

+ m2l2g cos (ρθ1 + u) + m3l3g cos θ3.
(2.1)
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Introducing a dissipation with the help of the Rayleigh function

R =
1
2
γ0(θ̇1 − θ̇3)2 +

1
2
β0θ̇

2
1 − M0θ̇1,

we obtain equations of motion in the form [32]:

d

dt

(
∂L

∂θ̇i

)
=

∂L

∂θi
− ∂R

∂θ̇i

, i = 1, 3,

or

(m1l
2
1 + m2l

2
2ρ

2)θ̈1 = −m1l1g sin θ1 − m2l2gρ sin (ρθ1 + u) + γ0θ̇3 − (β0 + γ0)θ̇1 + M0,

m3l
2
3θ̈3 = −m3l3g sin θ3 + γ0(θ̇1 − θ̇3).

Using the notation θ = θ1, ϕ = θ3, the dimensionless time τ = t
√

m1l1g/(m1l21 + m2l22ρ
2) and the

dimensionless parameters

γ =
γ0√

m1l1g(m1l21 + m2l22ρ
2)

, β =
β0√

m1l1g(m1l21 + m2l22ρ
2)

,

λ2 =
m2l2
m1l1ρ

, λ3 =
m3l3
m1l1ρ

, μ =
m3l

2
3

m1l
2
1 + m2l

2
2ρ

2
, M =

M0

m1l1g
,

(2.2)

we arrive at the following equations:

θ̈ = − sin θ − λ2 sin (ρθ + u) + γϕ̇ − (β + γ)θ̇ + M,

μϕ̈ = −λ3 sinϕ + γ(θ̇ − ϕ̇).
(2.3)

Under the condition μ � 1 the system of equations can be reduced and rewritten in the form:

θ̇ = ω,

ω̇ = − sin θ − λ2 sin (ρθ + u) − λ3 sin ϕ − βω + M,

ϕ̇ = −λ3γ
−1 sin ϕ + ω.

(2.4)

3. ATTRACTORS OF THE MODEL SYSTEM AND THEIR CHARACTERISTICS

Let us study the system (2.4) with fixed parameters λ3 = 1, β = 1, γ = 1, ρ = (
√

5 + 1)/2, while
λ2 and M are supposed to be varied.

In Fig. 2 examples of the Poincaré sections for attractors of the system (2.4) are shown.
The cross-sections are assumed at the moments corresponding to increase of θ by 2π, namely,
θn = θ0 + 2πn, n = 1 . . . 106, with θ0 = 0.0. The first column presents the attractors in coordinates
(ωn, ω̇n), while the second one shows them in coordinates (ξn, ωn), where ξn = ρθn (mod 2π).

The attractor in Fig. 2a is a two-frequency torus; it corresponds to a smooth closed invariant
curve in the Poincaré section. Figure 2b shows a three-frequency torus; its section gives rise to a
smooth 2D surface. The attractors in Figs. 2c and 2d are strange, and for their confident identifica-
tion one needs calculation of dynamical and metrical characteristics as Lyapunov exponents, phase
sensitivity exponents, and fractal dimensions.

Computations of the Lyapunov exponents were performed with the Benettin algorithm [33] using
the equations linearized near a reference phase trajectory of the system (2.4):

˙̃θ = ω̃,

˙̃ω = −θ̃ cos θ − λ2(ρθ̃ + ũ) cos (ρθ + u) − λ3ϕ̃ cos ϕ − βω̃,

˙̃ϕ = −λ3γ
−1ϕ̃ cos ϕ + ω̃.

(3.1)
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AUTONOMOUS STRANGE NONCHAOTIC OSCILLATIONS 213

Fig. 2. Phase portraits of attractors in projection to the plane in the Poincaré section θ (mod 2π) = 0 for
λ2 = 0.8: (a) M = 2.3 is a two-dimensional torus with a closed invariant curve in section; (b) M = 3.0 0 is a
three-dimensional torus; (c) M = 2.1 is an SNA; (d) M = 2.2 is a chaotic attractor.
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A set of three copies of Eqs. (3.1) with vectors of variables {θ̃(k), ω̃(k), ϕ̃(k)}k=1,...,3 and ũ(k) = 0
are integrated numerically simultaneously with the system (2.4); the procedure is complemented
by renormalization via the Gram – Schmidt procedure after equal time intervals; logarithms of the
normalization coefficient were summarized and averaged, finally resulting in the estimate of the
three Lyapunov exponents.

For the two-frequency torus in Fig. 2a the Lyapunov exponents are Λ1 = 0± 10−5, Λ2 = −0.0979,
Λ3 = −0.798, and for the three-frequency torus in Fig. 2b they are Λ1 = 0 ± 10−5, Λ2 = 0 ± 10−5,
Λ3 = −0.937. The attractor in Fig. 2c is characterized by the set Λ1 = 0 ± 10−5, Λ2 = −0.105,
Λ3 = −0.894, which testifies to its nonchaotic nature, although the geometrical structure looks quite
unlike a smooth invariant curve or surface. Finally, the chaotic attractor in Fig. 2d is characterized
by a set of exponents, one of which is positive: Λ1 = 0.0206, Λ2 = 0 ± 10−5, Λ3 = −0.869.

Note that in all the cases there is one more trivial exponent, which is associated with the
variable ξ = ρθ + u and with the equation ˙̃

ξ = ρω̃, which can be added to the system (3.1). We do
not mention it with respect to the procedure of the exponents computation, but keep it in mind
for retaining classical signatures of Lyapunov exponents.

The characteristic power spectra for all corresponding self-oscillation regimes are presented
in Fig. 3. The spectra for two- and three-frequency oscillations look like discrete sets of peaks at
certain frequencies (Figs. 3a, 3b), while for the chaotic mode the spectrum is continuous (Fig. 3d).
As for the case of a strange nonchaotic attractor (Fig. 3c), the spectrum possesses a combination
of features of order and chaos: one can observe a set of well-expressed characteristic peaks, which
looks dense on the frequency axis, but there is also a “substrate”, which makes the spectral density
nonvanishing outside the peaks.

Following [4–6], to characterize spectra in more detail, consider the spectral sums Z(Ω,m):

Z(Ω,m) =
m−1∑
k=0

ωke
i2πkΩ,

where {ωk}k=0,...,m−1 is a sequence of values of a dynamical variable produced by the Poincaré map,
and m is the total number of the points.

Fig. 3. Spectra calculated via discrete (at θ (mod 2π) = 0) sequence {ωn} for the system (2.4) for λ2 = 0.8:
(a) M = 2.3, two-frequency quasiperiodicity; (b) M = 3.0, three-frequency quasiperiodicity; (c) M = 2.1, SNA;
(d) M = 2.2, chaos.
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As is well known, discrete spectra corresponding to periodic and quasi-periodic modes consist of
countable sets of frequency components with nonzero amplitudes. Their spectral sums accumulate
as |Z|2 ∼ m2 at the frequencies presented in the spectrum, or they do not grow in absolute value
if the parameter Ω corresponds to a frequency absent in the spectrum. For chaotic and stochastic
regimes and signals, the point on the complex plane, presenting a spectral sum, performs random
walking, which corresponds to a linear growth of the averaged squared value of the spectral sum
modulus as |Z|2 ∼ m; it occurs for all or almost all values of the frequency parameter Ω. Such spectra
are regarded as “continuous” and are considered in the framework of the Wiener – Khinchin theory.
As for the SNA, singular continuous spectra are intrinsic to them [4, 5], where the growth of the
spectral sums is characterized by nontrivial fractional exponents.

Figure 4 shows diagrams of |Z(Ω,m)|2 depending on m for different Ω (the first row of diagrams),
and the walking of the complex value of the spectral sums on the complex plane (the second row)
for SNA at M = 2.1. The maximum trajectory length is 107 points; in order to obtain an exponent
of sum growth, a linear approximation via the least-squares method was used along 30 points
with numbers given by the Fibonacci numbers (from F6 = 8 to F35 = 9227465). The diagrams are
presented on a double logarithmic scale.

Fig. 4. Plots of dependencies of the squared spectral sum |Z(Ω, m)|2 for different frequency values: (a)
Ω = 1/3, (b) Ω = ρ/5, (c) Ω = π/3, (d) Ω = ρ + 2/ρ. Walks of the image point of the spectral sum on the
complex plane: (e), (f), (g), (h) at the same frequencies.

Numerical analysis reveals a few characteristic types of the spectral sums behavior with growth
of m. For randomly chosen rational (Fig. 4a) and irrational (Fig. 4b) frequencies, the value of |Z|2
grows via a power law |Z(Ω,m)|2 ∼ mη with exponent 0 � η < 1. In some cases, the growth of
the spectral sums does not take place or may be so slow that it can hardly be resolved in the
computations (Fig. 4c). On the other hand, there exists a set of frequencies which manifests the
growth of spectral sums via the law characteristic for a quasi-periodic dynamics: |Z(Ω,m)|2 ∼ m2.
Empirically we found that the corresponding frequencies could be expressed as

Ω =
∑

i

aiρ
bi , (3.2)

where ai and bi are arbitrary integers (both positive and negative), and the number of terms in the
sum (3.2) is not restricted. A characteristic example of such behavior of spectral sums is presented
in Fig. 4d for Ω = ρ + 2/ρ. Note that frequencies equal modulo 1 provide identical exponents of
growth; so, the relation frequencies (3.2) determine a dense set of spectral peaks on the unit interval
of the frequency axis.
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The lower row of diagrams in Fig. 4 illustrates random walks of the image point of the spectral
sum on the complex plane. This walking looks like a random diffusion for the cases of fractional
values of the exponent of spectral sum growth, and it turns out to be a directed drift for frequencies
given by the formula (3.2).

It is necessary to note that the obtained results are somewhat different from the ones presented in
references [4–6] for singular continuous spectra, since in the cited works the exponents of spectral
sums growth turn out to be localized within the interval 1 < η � 2, i. e., between well-ordered
growth and chaotic diffusion. Apparently, in the general case the distributions of amplitudes of
spectral components in systems with SNA may obey more complex rules than the ones typical for
the specific discrete model examined in the mentioned works1).

In order to exactly identify SNA and distinguish it from a two-dimensional torus (which is
characterized by the same signature of Lyapunov exponents: {0,−,−}), we make use of two methods
suggested in reference [10].

The first method, known as the “rational frequency approximation”, is to replace the irrational
parameter ρ by rational approximants {ρk} such that ρ = limk→∞ ρk. For the “golden mean” value
of ρ the ratios of Fibonacci numbers (ρk = Fk+1/Fk, Fk+1 = Fk + Fk−1, F1 = 1, F2 = 1) are the
approximants. At the k-th step of approximation, instead of the single system (2.4) with irrational ρ,
we consider an ensemble of analogous systems with rational ρk. In this case, one can choose various
values of the initial angle u, which becomes a relevant parameter of the system. Under variation
of the initial angle within the interval u ∈ [0, 2π/Fk ], the range of the variable ξ (mod 2π) fills the
whole interval [0, 2π], and the set of orbits corresponding to different values of u composes the
whole approximation of the attractor of the original system. It is assumed that the properties of
the original system will be obtained in the limit k → ∞. In the case where the original attractor is
a smooth torus, its approximation is also a closed smooth invariant set consisting of stable cycles of
period Fk with no bifurcation points. If any bifurcations of orbits occur under variation of the initial
angle u, it makes the approximating set nonsmooth and thus indicates a “strange” geometry of the
attractor being approximated. The existence of bifurcations of approximating orbits at different
levels k of approximation and the persistence of bifurcations under increase of the approximation
precision is a sufficient condition for the existence of SNA. For different values of Fk and of the
initial angle u, the approximating set for the SNA may contain periodic orbits of different periods
(divisible by Fk), quasi-periodic and chaotic orbits.

Figure 5 illustrates the structure of the approximating sets for the SNA at parameters of Fig. 2c
and for different rational approximants 8/5, 13/8, 34/21, 55/34, 89/55, 144/89. Each horizontal row
of diagrams (a), (b), . . ., (f) corresponds to one and the same value of ρk.

Consider first the upper row (a), which corresponds to ρk = 8/5. The first diagram presents
a Poincaré section of the approximating set of orbits in coordinates (ωn, ω̇n). As previously, the
section is performed at the moments θ = 0 (mod 2π), with the initial angle u for orbits being
varied uniformly within the interval u ∈ [0, 2π/Fk ]. Then the values of ξn = 2πρkn + u (mod 2π)
fill the whole interval [0, 2π]. In the second and third diagrams the Poincaré sections on the plane
of variables (ξn, ωn) are presented; note that in the third diagram the variable ξn possesses values
within the interval ξn ∈ [0, 2π/Fk ], which allows one to discern the internal bifurcation structure of
the approximating set. In these diagrams one can observe cascades of period doubling bifurcations
and transitions to chaos, so that the whole approximation of the attractor represents an aggregate
of periodic and chaotic orbits. The existence of bifurcations and chaos is also confirmed by plots of
Lyapunov exponents versus u, as shown in the last diagram of the row. At the moment of bifurcation
the second exponent Λ2 takes zero value, and in the chaotic regions the largest exponent Λ1 is
positive.

The posterior rows of diagrams ((b), (c) etc.) illustrate the approximating sets of orbits for the
SNA at higher levels k of the approximation. In these diagrams one can see that the bifurcations
persist under increase of the approximation number, while the structure of the bifurcation sets

1)Besides the model system (2.4), the properties of spectral sums for the “robust” strange nonchaotic attractor in
the system of Hunt and Ott (see map (1) in reference [3]) were also investigated in the course of our studies.
The results we obtained turned out to be identical to the ones presented here for the system (2.4), which testifies
to the existence of a more general pattern of spectral structure for SNA, which is not connected to our specific
choice of the model system.
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Fig. 5. Rational approximation of SNA for λ2 = 0.8, M = 2.1 and different ρk. (a): ρ5 = 8/5, (b): ρ6 = 13/8,
(c): ρ8 = 34/21, (d): ρ9 = 55/34, (e): ρ10 = 89/55, (f): ρ11 = 144/89. See explanations in the text.
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becomes more complicated; breaks of the curves at the bifurcation points are visible. Also, the
number of chaotic orbits within the approximating set decreases, which agrees with the existence of
the nonchaotic limiting attractor. Summing up, such a structure of approximation, persisting under
increase of the approximation accuracy, suggests that the structure of the attractor is nonsmooth
as ρk → ρ, which is what we set out to show.

The second method for distinguishing SNA from a smooth torus is to analyze the phase
sensitivity. To use this method, we introduce a nonzero infinitesimal phase shift ũ = const �= 0
in the linearized system (3.1). After that, Eqs. (3.1) are integrated together with (2.4) and with
the initial conditions θ̃(0) = 0, ω̃(0) = 0, ϕ̃(0) = 0 and ũ(0) = 1. Define now a piecewise smooth
function as the magnitude of the maximal variation of the variables along the orbit segment, namely,

Γmax(T ) = maxt∈[0,T ]

√
θ̃2(t) + ω̃2(t) + ϕ̃2(t). Next, we introduce the phase sensitivity function as a

minimum of the functions Γmax(T ) computed along a set of N trajectories with randomly specified
initial conditions: Γ(T ) = min(θn(0),ωn(0),ϕn(0))n=1,...,N

Γmax(T ). It is known that the function of the
phase sensitivity is bounded when the attractor is a smooth torus, and grows without limit,
according to a power law Γ(T ) ∝ T δ, where δ > 0 is the index of the phase sensitivity, in the
case of SNA [10]. Typical plots of Γ(T ) for a smooth two-frequency torus (δ = 0) and for an SNA
(δ = 1.7) are shown in Fig. 6a. The parameter values are the same as in Figs. 2a, 2c.

Fig. 6. (a) Plot of the phase sensitivity function for the SNA mode (δ = 1.7) and for the 2D smooth torus
(δ = 0). (b) The dependence of Renyi entropy Hq(ε) on the partition scale ε for q = 0, 1, 2.

Direct verification of the “strange” geometric structure of the attractor can be performed by
calculating the fractal dimensions [34]. The spectrum of generalized dimensions is introduced via
the Renyi entropy values Hq(ε) depending on the parameter q:

Hq(ε) =
1

1 − q
log

⎛
⎝N(ε)∑

i=1

pq
i

⎞
⎠ , Dq = − lim

ε→0

Hq(ε)
log ε

. (3.3)

Here ε is the size of elements covering the attractor and pi is the measure (probability of
visiting) attributed to the i-th element. With q = 0, 1, and 2 we get the capacitance, information2)

and correlation dimension, respectively. It is believed [2, 3] that the dimensions for the strange
nonchaotic attractor are

D0 = 2, D1 = 1, D2 < 1.

To calculate the dimensions, we use the Poincaré section for trajectories on the attractor at
θn = θ0 + 2πn, n = 1, . . . , 107. Next, for given q = 0, 1, 2 we plot the Renyi entropies Hq(ε) versus
ε and select linear parts of the plots there (see. Fig. 6b); the slope coefficients just yield the
respective fractal dimensions. Specifically, we have obtained D0 = 1.8, D1 = 1.02, and D2 = 0.96.
This reasonably agrees with the estimations in references [2, 3].

2)It should be noted that with q = 1 the l’Hopital rule has to be applied in formula (3.3) to exclude the uncertainty.

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 3 2017



AUTONOMOUS STRANGE NONCHAOTIC OSCILLATIONS 219

4. PARAMETER SPACE STRUCTURE AND DYNAMICAL TRANSITIONS
OF THE REDUCED MODEL

Let us consider the problem of the existence of a stable equilibrium and of a vibrational-
rotational dynamics in the model system (2.4). For this, we require the right-hand sides of the
equations to be zero. From the second equation we obtain the relation sin θ + λ2 sin (ρθ + u) = M .
It immediately follows that for M > λ2 + 1 the stable equilibrium cannot occur in the mechanical
system. Therefore, the dynamics of the system must be rotational, with the phase increasing with
time.

Figure 7a gives a general idea of the parameter space structure for the system (2.4). In this
figure a fragment of a chart of dynamical regimes is presented on the parameter plane in the region
of nontrivial dynamics. Blue indicates the areas of two-frequency quasi-periodic oscillations (2T),
green indicates the three-frequency quasi-periodicity (3T), yellow means the strange nonchaotic
attractor (SNA), and red corresponds to the chaotic attractor (CA). In the white area below the
line M = λ2 + 1, the attractor is a trivial stable equilibrium (SE) point. Note that vibrational-
rotational dynamical regimes can exist in the region M < λ2 + 1 also, jointly with the stable
equilibrium. They can arise for appropriate choices of initial conditions. Such a phenomenon is
known as “multistability”. Figure 7b shows an enlarged fragment of the chart in the region of
complex dynamical transitions between “regular” and “strange” regimes (the colors have the same
meaning, as previously). These charts show a wide range of all basic types of dynamical behavior
in the parameter space of our model.

Fig. 7. (a) A fragment of the chart of dynamical regimes for the system (2.4). (b) The enlarged fragment of
the chart in the region of complex dynamical transitions.
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Let us fix the parameter value λ2 = 0.8 and analyze the dynamical transitions under increase of
the driving torque M . Moving along the left cut of the parameter plane chart in Fig. 7b, one can ob-
serve the following sequence of the alternating dynamical regimes: SE→2T→SNA→CA→2T→3T.
Let us consider them in some detail. The transition SE→2T occurs due to a backward saddle-node
bifurcation of the stable equilibrium point, and then a two-frequency quasi-periodic rotational
mode arises. Under further increase of the moment M , a two-frequency torus breaks down with
the birth of the strange nonchaotic attractor (2T→SNA). In its turn, the regions of SNA alternate
with chaos until the next saddle-node bifurcation occurs, and a new two-frequency attracting torus
arises (CA→2T). Under further increase of M , one can observe an infinite sequence of forward and
backward saddle-node bifurcations of tori when crossing the Arnold tongues of synchronization, so
that the regimes of two- and three-frequency quasi-periodicity alternate at a small variation scale
of M .

Fig. 8. Plots of the dependencies of Lyapunov exponents on the parameter M for (a) λ2 = 0.8, (b) λ2 = 1.1.

In Fig. 8a the corresponding plots of Lyapunov exponents versus the parameter M are shown.
These plots also make it possible to distinguish intervals of the stable equilibrium (Λ1,2,3 < 0), two-
frequency quasi-periodicity or SNA (Λ1 = 0, Λ2,3 < 0), three-frequency quasi-periodicity (Λ1,2 = 0,
Λ3 < 0), chaos (Λ1 > 0, Λ2 = 0, Λ3 < 0). Moreover, based on the values of Lyapunov exponents
at dynamical transitions, we can also suggest whether they are smooth (phase-independent) or
nonsmooth (phase-dependent)3). At the moment of a smooth transition, the largest nontrivial
Lyapunov exponent takes zero value, as it occurs at the transitions SE→2T (Λ1 = 0), CA→2T

3)By “smooth” one means bifurcations of a torus when all of the quasi-periodic orbits on the torus transform
simultaneously, irrespective of their phase coordinate on the torus; for example, this occurs at a smooth saddle-
node bifurcation, when the stable torus uniformly collides with the saddle one. When the “nonsmooth”, phase-
dependent bifurcation takes place, the collision occurs in the dense set of points on the torus. Smooth and
nonsmooth bifurcations of tori are considered in detail in reference [16]; the corresponding renormalization group
analysis is carried out in reference [17].
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(Λ1,2 = 0) and 2T→3T (Λ2 = 0). On the other hand, the transition 2T→SNA is a nonsmooth one,
since it is accompanied by a nonzero value of the largest nontrivial Lyapunov exponent (Λ2 < 0); as
for the transition SNA→CA, it has a statistical nature [35]. In Fig. 8b, analogous plots are presented
for λ2 = 1.1. Note that the transition SNA→2T in Fig. 8b also occurs due to the phase-dependent
mechanism, since the corresponding exponent is nonzero (Λ2 < 0, see the enlarged fragment of the
plot).

5. ATTRACTORS AND DYNAMICAL TRANSITIONS IN THE ORIGINAL
MECHANICAL SYSTEM

So far, we have considered numerically the reduced (3D) system (2.4). In this section we
return to the original (4D) mechanical system described by Eqs. (2.3). Our aim is to discuss
the correspondence between these models and to ascertain how the reduction of the model has
affected the range of the dynamical phenomena being observed. We proceed from the assumption
that the reduction of the original equations does not play an essential role and does not result in
the appearance of any new dynamics that are not typical of the realistic mechanical system.

First, let us choose the value of a “small” parameter μ = 0.1, while the other parameters will
remain the same (λ3 = 1, β = 1, γ = 1, ρ = (

√
5 + 1)/2), and the parameters λ2 and M are varied.

The system (2.3) can be rewritten as

θ̇ = ω,

ω̇ = − sin θ − λ2 sin (ρθ + u) + γψ − (β + γ)ω + M,

ϕ̇ = ψ,

ψ̇ = μ−1
(
− λ3 sin ϕ + γ(ω − ψ)

)
.

(5.1)

Figure 9 shows examples of the attractors of the system: two- and three-dimensional tori,
strange nonchaotic and chaotic attractors. The characteristic Lyapunov exponents were calculated,
as previously, by linearizing the system (5.1) and using the Benettin algorithm. They are:
(a) Λ1 = 0 ± 10−5, Λ2 = −0.0472, Λ3 = −0.7225, Λ4 = −11.23;
(b) Λ1 = 0 ± 10−5, Λ2 = 0 ± 10−5, Λ3 = −0.8439, Λ4 = −11.16;
(c) Λ1 = 0 ± 10−5, Λ2 = −0.0583, Λ3 = −0.7921, Λ4 = −11.15;
(d) Λ1 = 0.0247, Λ2 = 0 ± 10−5, Λ3 = −0.7852, Λ4 = −11.24.

The power spectra for the corresponding oscillatory regimes at the same parameter values are
shown in Fig. 10. The spectra have characteristic discrete peaks for two- and three-frequency
quasi-periodic regimes (Figs. 10a, 10b). For the chaotic mode, the power spectrum is continuous
(Fig. 10d), and for the strange nonchaotic self-oscillatory regime it has more complicated (singular
continuous) structure (Fig. 10c).

In order to characterize and distinguish SNA from a 2D smooth torus, we use the method
of phase sensitivity in the same way as in Section 3 for the reduced system. Namely, we
introduce the phase sensitivity function as Γmax(T ) = maxt∈[0,T ](θ̃2(t) + ω̃2(t) + ϕ̃2(t) + ψ̃2(t))−1/2

and Γ(T ) = min(θn(0),ωn(0),ϕn(0),ψn(0))n=1,...,N
Γmax(T ). The value of the phase sensitivity exponent

for the SNA at λ2 = 0.8 and M = 2.0 turns out to be δ ≈ 2.6; for the case of a 2D torus at
λ2 = 0.8 and M = 2.15 the function Γ(T ) is bounded (δ = 0.0), see Fig. 11a. A direct check of the
dynamical and metrical characteristics of the SNA via calculation of the generalized dimensions
shows the existence of a fractal-like structure: the attractor possesses values of capacity dimension
D0 ≈ 1.9, information dimension D1 ≈ 1.1 and correlation dimension D2 ≈ 0.97 (see Fig. 11b),
which agrees well with the previously reported results of references [2, 3]. Thus, one can conclude
that the original system (5.1) possesses the same basic types of self-oscillatory dynamical regimes
(and the corresponding attractors in the phase space) as the reduced system (2.4).

Finally, let us consider the structure of the parameter space of the system (5.1) in different
sections. Figure 12 shows two different charts of dynamical regimes: on the plane (λ2,M) at μ = 0.1
(Fig. 12a) and on the plane (μ,M) at λ2 = 0.8 (Fig. 12b).
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Fig. 9. Phase portraits of the attractors of the system (5.1) in the Poincaré section at θ (mod 2π) = 0 for
λ2 = 0.8: (a) 2D torus at M = 2.15 (closed invariant curve); (b) 3D torus at M = 3.0; (c) SNA at M = 2.0;
(d) chaotic attractor at M = 2.04.

Comparing the charts of dynamical regimes in Fig. 12a and in Fig. 7b, one can see a similar
structure of the regions of different dynamics for the fixed small parameter μ = 0.1. First, as
previously, the stable equilibrium of the system is possible only in the region M < λ2 + 1, which
can be checked by setting to zero the right-hand sides of all equations of the system (5.1). Also,
the vibrational-rotational dynamics is possible in this region under appropriate initial conditions,
so that the multistability may take place. Second, the displacement of the system from equilibrium
may lead either to two-frequency quasi-periodic or to strange nonchaotic and chaotic dynamics.
Third, as before, the three-frequency quasi-periodicity arises as the torque M increases, and it
predominates in the parameter space over all other possible dynamical regimes.

The second chart (in Fig. 12b) shows how the set of basic regimes changes as the parameter μ
increases. It immediately follows from this chart that nontrivial types of dynamics (i.e., SNA and
chaos) mainly exist in the region μ < 0.3. For larger values of the parameter μ the dynamics of the
system degenerates into two- and (mainly) three-frequency quasi-periodicity. Taking into account
the physical meaning of the parameter μ (see Fig. 1 and formulas (2.2)), one can conclude that the
mechanical system exhibits nontrivial behavior at relatively small values of: (i) the torque affecting
the disk 1, and (ii) the size of the disk 3 and the mass concentrated on it.

6. CONCLUSION

In conclusion, we note that the interest in “strange” and complex dynamics of self-oscillatory
systems is not incidental. The investigation of such systems is of theoretical and especially practical
importance. Self-generators may be preferable compared to forced generators in some practical
applications where a synchronization of subsystems is required, e.g., in secure communication,
since the absence of an external driving force simplifies the procedure of synchronization of the
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Fig. 10. Power spectra of oscillatory regimes of the system (5.1): (a) 2-frequency quasi-periodic regime at
M = 2.15, (b) 3-frequency quasi-periodic regime at M = 3.0, (c) SNA at M = 2.0, (d) chaotic regime at
M = 2.04.

Fig. 11. (a) Plots of the phase sensitivity functions Γ(t) for SNA (δ = 2.6) and for 2D torus (δ = 0). (b) The
dependence of Renyi entropy Hq(ε) on the partition scale ε for q = 0, 1, 2.

transmitter and the receiver, respectively. In its turn, the idea of using systems with the strange
nonchaotic attractor in secure communication schemes has already been expressed, in particular,
in [36, 37]. In this context, the designing of systems with strange nonchaotic self-oscillations in a wide
range of parameter values is of special interest. Of course, the problem of developing radiotechnical
devices with the required properties still remains open. However, the autonomous form of the
equations with SNA obtained in this paper, as well as the general idea of converting irrationally
related spatial scales to oscillatory modes with incommensurable frequencies essentially expands
the class of systems that can exhibit strange nonchaotic dynamics.
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Fig. 12. Fragments of the charts of dynamical regimes of the system (5.1): (a) on the plane (λ2, M) at μ = 0.1
and (b) on the plane (μ, M) at λ2 = 0.8. Two-frequency quasi-periodicity is shown in blue, the three-frequency
regime in green, chaos in red, SNA in yellow, and the stable equilibrium point in white.
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Forced Hénon Map, Phys. Rev. E (3), 2005, vol. 71, no. 1, 016206, 14 pp.

20. Jalnine, A. Yu., Kuznetsov, S. P., and Osbaldestin, A. H., Dynamics of Small Perturbations of Orbits
on a Torus in a Quasiperiodically Forced 2D Dissipative Map, Regul. Chaotic Dyn., 2006, vol. 11, no. 1,
pp. 19–30.

21. Jalnine, A. Yu. and Kuznetsov, S. P., On the Realization of the Hunt –Ott Strange Nonchaotic Attractor
in a Physical System, Tech. Phys., 2007, vol. 52, no. 4, pp. 401–408; see also: Zh. Tekh. Fiz., 2007, vol. 77,
no. 4, pp. 10–18.

22. Ditto, W. L., Spano, M. L., Savage, H. T., Rauseo, S. N., Heagy, J., and Ott, E., Experimental Observation
of a Strange Nonchaotic Attractor, Phys. Rev. Lett., 1990, vol. 65, no. 5, pp. 533–536.

23. Vohra, S. T., Bucholtz, F., Koo, K. P., and Dagenais, D. M., Experimental Observation of Period-
Doubling Suppression in the Strain Dynamics of a Magnetostrictive Ribbon, Phys. Rev. Lett., 1991,
vol. 66, no. 2, pp. 212–215.

24. Zhou, T., Moss, F., and Bulsara, A., Observation of a Strange Nonchaotic Attractor in a Multistable
Potential, Phys. Rev. A, 1992, vol. 45, no. 8, pp. 5394–5400.

25. Ding, W. X., Deutsch, H., Dinklage, A., and Wilke, C., Observation of a Strange Nonchaotic Attractor
in a Neon Glow Discharge, Phys. Rev. E, 1997, vol. 55, no. 3, pp. 3769–3772.

26. Yang, T. and Bilimgut, K., Experimental Results of Strange Nonchaotic Phenomenon in a Second-Order
Quasi-Periodically Forced Electronic Circuit, Phys. Lett. A, 1997, vol. 236, nos. 5–6, pp. 494–504.

27. Bezruchko, B. P., Kuznetsov, S. P., and Seleznev, Ye. P., Experimental Observation of Dynamics Near
the Torus-Doubling Terminal Critical Point, Phys. Rev. E, 2000, vol. 62, no. 6, pp. 7828–7830.

28. Anishchenko, V. S., Vadivasova, T.E., and Sosnovtseva, O.V., Strange Nonchaotic Attractors in Au-
tonomous and Periodically Driven Systems, Phys. Rev. E, 1996, vol. 54, no. 4, pp. 3231–3234.

29. Pikovsky, A. S. and Feudel, U., Comment on “Strange Nonchaotic Attractors in Autonomous and Peri-
odically Driven Systems”, Phys. Rev. E, 1997, vol. 56, no. 6, pp. 7320–7321.

30. Mitsui, T. and Aizawa, Y., Intermittency Route to Strange Nonchaotic Attractors in a Non-Skew-
Product Map, Phys. Rev. E, 2010, vol. 81, no. 4, 046210, 8 pp.

31. Jalnine, A. Yu. and Kuznetsov, S. P., Strange Nonchaotic Self-Oscillator, Europhys. Lett., 2016, vol. 115,
no. 3, 30004, 5 pp.

32. Goldstein, H., Poole, Ch. P. Jr., and Safko, J. L., Classical Mechanics, 3rd ed., Boston,Mass.: Addison-
Wesley, 2001.

33. Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge:
Cambridge Univ. Press, 2016.

34. Ott, E., Chaos in Dynamical Systems, Cambridge: Cambridge Univ. Press, 1993.
35. Lai, Y.-C., Transition from Strange Nonchaotic to Strange Chaotic Attractors, Phys. Rev. E, 1996,

vol. 53, no. 1, pp. 57–65.
36. Ramaswamy, R., Synchronization of Strange Nonchaotic Attractors, Phys. Rev. E, 1997, vol. 56, no. 6,

pp. 7294–7296.
37. Zhou, C. and Chen, T., Robust Communication via Synchronization between Nonchaotic Strange

Attractors, Europhys. Lett., 1997, vol. 38, no. 4, pp. 261–265.

REGULAR AND CHAOTIC DYNAMICS Vol. 22 No. 3 2017


