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Abstract—A generalized model with bifurcations associated with blue sky catastrophes is
introduced. Depending on an integer index m, different kinds of attractors arise, including
those associated with quasi-periodic oscillations and with hyperbolic chaos. Verification of
the hyperbolicity is provided based on statistical analysis of intersection angles of stable and
unstable manifolds.
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INTRODUCTION

Originally, the bifurcation called the blue sky catastrophe was described in [1]. In the simplest
case it can be explained as follows. The phase trajectory departs from a vicinity of a semistable
limit cycle (saddle-node periodic orbit) existing at the threshold of the bifurcation, goes around
a large-size loop, and turns back to the limit cycle from the other side. As a control parameter
is varied in one direction, the semistable cycle transforms into a pair of cycles, a stable and an
unstable one. As the control parameter is varied in the opposite direction, two cycles meet each
other, forming the semistable cycle, and then disappear, while the large-size limit cycle emerges in
the domain of the above-mentioned loop containing helical coils in the phase space region of the
former limit cycle pair (Fig. 1a). Conditions and mechanisms of birth of limit cycles through the
blue sky catastrophe are described in detail in [2–8].

According to the analysis developed in [2], it is natural to consider actually a family of such
bifurcations distinguished by an integer index m. Indeed, in general, if a phase trajectory with
some angular coordinate ϕ departs from the saddle-node cycle, then after a travel along the large-
size loop and subsequent return it will be characterized by this angular coordinate expressed by a
relation containing an additive term of form mϕ (Fig. 1b). For three-dimensional phase space (the
minimal dimension where the blue-sky catastrophe may take place) the integer m may be either 0
or 1. However, at higher dimensions, any integer can occur. In particular, m = 2 will correspond
to the birth of a hyperbolic strange attractor represented by a classical Smale–Williams solenoid
in a Poincaré section, and m > 2 to solenoids of larger rates of increase in the number of loops at
successive stages of their geometric construction [3] (Fig. 2).
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Fig. 1. Phase space structure in the case of the blue sky catastrophe in the simplest case of three dimensions
(a) and schematic representation of the situation where the Smale–Williams attractor can appear in a phase
space of dimension 4 and higher (b).

Fig. 2. Formal geometric construction of the Smale-Williams solenoids associated with the indices m = 2,
3, and 4: initial toroidal domain in the state space, results of its transformation in the first iteration of the
mapping, and the solenoid obtained after a large number of repetitive applications of the procedure.

In a series of works, different applications were discussed in relation to the blue sky catastrophes.
Remarkably, a lot was done in connection with biological models and neurons. For instance, some
results demonstrating a transition between tonic-spiking and bursting in a model of leech neuron
are presented in reference [9]. Also, in [10–12] it was mentioned that this kind of bifurcation can be
considered as the main mechanism for the onset of the burst-spike dynamics, and it was observed in
other neuron-like models. Such approaches were applied for relaxation systems with fast and slow
variables, and for modeling the cardiac rhythms [13, 14]. In a recent paper [15] the authors suggest
that the interaction of technology and economic policy regulations in the energy sector may be
described by slow-fast systems, where the blue sky catastrophes are possible. In [16] the bifurcation
associated with the blue sky catastrophe was considered as one of scenarios for the birth of chimera
states in ensembles of phase oscillators, which are used for description networks of neurons and for
other biological models of interaction.

In [17] the bifurcation of the blue sky catastrophe has been found in a binary mixture contained
in a laterally heated cavity at small Prandtl numbers. In [18–20] the blue sky catastrophes are
discussed in relation to astrophysics, in the context of the restricted four-body problem. In [21]
results are presented concerning maps describing the Josephson junction, where such kind of
bifurcation was observed. In [22] a blue sky catastrophe of limit cycles of van der Pol system
with noise (fuzzy disturbance) was studied.

Also, theoretical investigations of the blue sky catastrophes continue to develop [23–26]. Most
of these studies relate to the simplest case of the limit cycle birth in the bifurcation (index m = 0
according to the classification of reference [2]).
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However, no concrete examples relating to the emergence of hyperbolic chaos have been
considered, although recently a number of models and experimental electronic circuits manifesting
this phenomenon have been proposed [27–29, 32, 33].

In the context of the present study, the most important is the four-dimensional system, in which
an attractor of Smale –Williams type appears as a result of the blue sky catastrophe with the
Turaev – Shilnikov index m = 2, which was suggested and studied numerically in reference [33]. By
modifying this system, it is possible to construct models with other integer indices m representing
various types of the blue-sky catastrophes; particularly, in reference [34] we considered the case
m = 1 associated with the birth of quasi-periodicity.

In the present work we suggest a generalized model representing a family of four-dimensional
dynamical systems, in which the blue sky catastrophes of different classes outlined by Turaev and
Shilnikov [2, 3] take place. In Section 2 we introduce a model manifesting the blue sky catastrophes
containing an index m as an integer parameter, depending on what kinds of attractors can arise due
to the bifurcations. In Section 3 we review possible dynamical regimes of the model and discuss the
structure of the space of control parameters. In Section 4 we consider a generalized model in the
case of emergence of quasi-periodic dynamics m = 1. In Section 5 results of numerical simulation
of the generalized model with m = 2, 3, 4 are presented, and the occurrence of hyperbolic chaos is
demonstrated. In Section 6 we present results of verification of hyperbolicity based on analysis of
statistical distributions of the angles of intersection of stable and unstable manifolds of orbits on
the attractors.

1. FAMILY OF SYSTEMS WITH THE BLUE SKY CATASTROPHES

In order to construct a generalized model, let us start with a two-dimensional predator–prey
system with instant state specified by two nonnegative variables r1, r2:

ṙ1 = 2
(

1 − r2 +
1
2
r1 −

1
50

r2
1

)
r1,

ṙ2 = 2
(

r1 − μ +
1
2
r2 −

1
50

r2
2

)
r2.

(1.1)

Fig. 3. Phase portraits of the system (1.1); diagrams from (a) to (c) correspond to increase in parameter μ.

These equations differ from those in reference [29] with additional nonlinear terms in the second
(“predator”) equation, and contain a control parameter μ. If the value of μ is slightly less than
μ0 = 31

8 , the picture of orbits on the phase plane (r1, r2) looks like that shown in Fig. 3a. There
are four fixed points here, an unstable focus F , saddles S1 and S2, and a node N1. With increasing
μ, the fixed points S1 and N1 move to meet each other at μ = μ0, and then disappear (see panels
(b) and (c), respectively). Instead of the former pair of fixed points, a domain of relatively slow
motion appears there, while the attractor is a limit cycle, which passes close to the origin and to
the saddle S2.
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Following [29], let us consider the quantities r1 and r2 as squared absolute values of complex
amplitudes for two oscillators of some frequency ω0, namely, r1,2 = |a1,2|2. One can write down a
set of differential equations for the complex variables a1 and a2 and add terms of a certain form,
which introduce an additional coupling between the oscillators in the following way:

ȧ1 = −iω0a1 +
(

1 − |a2|2 +
1
2
|a1|2 −

1
50

|a1|4
)

a1 +
1
2
ε Im am

2 ,

ȧ2 = −iω0a2 +
(
|a1|2 − μ +

1
2
|a2|2 −

1
50

|a2|4
)

a2 + εRe a1.

(1.2)

Here ε is a coupling coefficient and m is an integer index. At ε = 0, the equations for r1,2 = |a1,2|2 =
x2

1,2 + y2
1,2 derived from (1.2) coincide precisely with Eqs. (1.1). At ε small enough, and at values of

μ notably less than μ0, the sustained dynamics presented graphically on the plane (r1, r2) is located
close to the node N1. For nonzero ε, this is a limit cycle of such kind that the second oscillator has
some notable amplitude, while for the first one the amplitude is very small. Besides, there is an
unstable limit cycle close to S1. With gradual increase of the parameter, both cycles come closer,
meet together and coincide at some μ = μc(ε) ≈ μ0, forming a semistable limit cycle. At μ > μc(ε)
it disappears. Now the motion of a representative point on the plane (r1, r2) follows approximately
a closed large-scale path, as in Fig. 3c, visiting again and again a neighborhood of the origin.
Qualitatively, for each such passage, the following stages may be specified: excitation of the first
oscillator (i), excitation of the second oscillator (ii), damping of the first oscillator (iii), and slower
damping of the second oscillator (iv). Activation of the second oscillator occurs in the presence of
driving from the partner, due to the coupling term proportional to ε in the second equation, so it
inherits the phase from the first oscillator. During the damping stage of the second oscillator, its
residual oscillations initiate the activation of the first one. The corresponding term proportional to
ε in the first equation contains complex amplitude in the power of m, so this transfer of excitation
is accompanied with multiplication of the argument of the complex variable that is the phase of
the oscillations. Then the process repeats again and again. So the transformation of the phase at
each next cycle of the excitation exchange corresponds to the circle map,

ϕn+1 = mϕn + const, (1.3)

which is expanding for m � 2. At m = 2 it is commonly referred to as the Bernoulli map. Then let
us analyze dynamical regimes in the model (1.2) for different m.

2. DYNAMICAL BEHAVIOR OF THE GENERALIZED MODEL

One of the well-known techniques for studies of dynamical systems is the method of charts of
dynamical regimes [30, 31], which reveals the disposition of dynamical regimes depending on control
parameters visualizing the parameter plane topography. Let us consider the system (1.2) using this
method. As the control parameters we choose the basic frequency of the self-oscillations ω0 and
the parameter μ responsible for the transition through the blue sky bifurcation. We note that the
index m is not regarded as a control parameter in the classical sense, since the differential equations
are modified if we change m. Undertaking the computations, for each value of m we deal with a
concrete four-dimensional set of differential equations (In the Appendix full representations of the
equations are collected with different values of m).

Figure 4 shows the charts of dynamical regimes for m = 1 (a), m = 2 (b), m = 3 (c), and
m = 4 (d). In the course of plotting the charts, for periodic regimes we evaluate the number of
discrete points in the Poincaré section by a surface Re(a1) = 0 after excluding transients. (The
legend for correspondence of the periods and colors is given in the bottom part of Fig. 4). In the
case of the number of discrete points larger than 120, we regard the regime as nonperiodic (which
may be either chaotic or quasi-periodic), and the respective point of the parameter plane is colored
by a certain gray color tone.

For all values of m from 1 to 4, on the parameter planes of Fig. 4 one can observe two kinds of
characteristic bifurcation lines, at which complex dynamics emerge. The first line μBS

c ≈ 31
8 is that

corresponding to the bifurcation of the blue sky catastrophe. The second line μNS
c ≈ 16.5 is that
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Fig. 4. Charts of dynamical regimes for the generalized model (1.2) at (a) m = 1, ε = 1; (b) m = 2, ε = 0.5;
(c) m = 3, ε = 0.1; (d) m = 4, ε = 0.02.

of the Neimark – Sacker bifurcation. Arrangements of the parameter plane for all discussed values
of m look similar: for μNS

c < μ < μBS
c periodic self-oscillations take place; inside the band between

μBS
c and μ < μNS

c there is a complex structure including resonance tongues and nonperiodic self-
oscillations.

Fig. 5. Two-dimensional projections of phase portraits and Lissajous figures for the model (1.2) before the
bifurcation of the blue sky at μ = 3.1, ω0 = 2π, (a) m = 1, ε = 1; (b) m = 2, ε = 0.5; (c) m = 3, ε = 0.1;
(d) m = 4, ε = 0.02.
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Periods of the regimes occurring before the blue sky catastrophe (μ < μBS
c ) differ depending on

the index m. In Fig. 5 we show the corresponding two-dimensional projections of phase portraits on
the plane of real and complex parts of the amplitude of the first oscillator

(
�(a1), �(a1)

)
and two-

dimensional projections of Lissajous figures on the planes of real parts of amplitudes of the first and
the second oscillators

(
�(a1), �(a2)

)
. On the projections of phase portraits the observed numbers

of rotation for the orbits correspond to the index m. On the projections of the Lissajous figures
with increase of the index m one can see the appearance of self-intersections of the trajectory; the
number of self-intersections is equal to m − 1.

Inside the area between the bifurcation lines μBS
c and μNS

c sets of synchronization tongues occur
on the parameter plane, and among them one can distinguish main tongues of period 1. The upper
bases of the tongues are placed along the Neimark – Sacker bifurcation line; the last tongue of
period-1 is located on the parameter plane at frequency ω0 = 4.8π, other tongues at ω02 = ω0/2,
ω03 = ω0/3, ω04 = ω0/4, ω05 = ω0/5, ω06 = ω0/6; the frequencies of the successive tongues decrease
geometrically. Between the period-1 tongues, narrower tongues of higher order are observed. The
bottom base of the main diagonal line of period-1 (ω0 = 4.8π) leans on the line of bifurcation
associated with the blue sky catastrophe; to the right of this only resonances of higher orders are
observed, but to the left of this the same repeating structures of tongues are observed, which lean
on the main diagonal tongue of period-1 instead of the line of blue sky catastrophe.

Apart from that, we discuss quasi-periodic and chaotic oscillations (domains of gray color on
the parameter planes). As mentioned above, the horizontal line μNS

c ≈ 16.5 corresponds to the
Neimark – Sacker bifurcation; as a result of this bifurcation a two-dimensional torus emerges for any
m as we go downward in the parameter plane. Tongues of synchronization with different winding
numbers lean on the line of the Neimark – Sacker bifurcation. With decreasing μ the synchronization
tongues overlap, and chaotic dynamics develops. Inside several tongues one can observe transition
to chaos via period-doubling bifurcation cascades.

The structure of the parameter plane near the line of bifurcation of the blue sky catastrophe
differs essentially for different m. The synchronization tongues at the bottom bifurcation line
tighten at one point. Note that the formation of complex dynamics in the course of the blue
sky bifurcation has specific features for different values of index m. For example, for m = 1 one
can see that the synchronization tongues of high order approach very close the bifurcation line and
tend to one point along this line (Fig. 4a). It was checked in [34] that for this case, as a result
of the blue sky catastrophe, a two-frequency torus is born; see also Section 4. For m = 2, 3, 4 one
can see homogeneous domains of chaotic dynamics (gray color) on the parameter planes above
the bifurcation line of blue sky catastrophe in several intervals of ω0, which correspond to robust
hyperbolic chaos (Figs. 4b–4d). In Section 5 we consider in detail the features of formation of
hyperbolic chaos. In Section 6 we present results of computer verification of the hyperbolicity.

3. QUASI-PERIODIC DYNAMICS

Quasi-periodic oscillations are typical of systems of coupled oscillators. As one can see from
Fig. 4, quasi-periodic dynamics take place in the generalized model (1.2), arising as a result of the
Neimark – Sacker bifurcation for μNS

c ≈ 16.5. The topography of the parameter plane has a specific
characteristic structure manifesting sets of tongues of synchronization on multiple frequencies
embedded in the area of quasi-periodicity.

In Fig. 6 two-dimensional projections (gray color) and Poincaré sections (black color) of typical
phase portraits for the generalized model (1.2) are presented for different values of index m.
Projections of the attractors are projections of tori. In the Poincaré section an invariant curve
is visualized1).

Quasi-periodic oscillations in the model (1.2) with index m = 1 occur as a result of the blue sky
catastrophe. Figure 7 shows a two-dimensional projection of phase portrait (a), and its Poincaré
section formed by the intersection with the surface Re(a1) = 0 (b). In the Poincaré section we
observe a smooth invariant curve. The diagram in panel (c) demonstrates the evolution of phases
at successive crossings of the surface |a1| = |a2| corresponding to the Poincaré section in the correct

1)For this case we realized the Poincaré section by the surface Re(a1) = 0.
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Fig. 6. Two-dimensional projections (gray) and Poincaré sections formed by the intersection with the plane
Re(a1) = 0 of two-frequency quasi-periodic oscillations born as a result of the Neimark – Sacker bifurcation,
(a) m = 1, ε = 1, ω0 = 3π, μ = 16; (b) m = 2, ε = 0.5, ω0 = 2π, μ = 16; (c) m = 3, ε = 0.1, ω0 = 2π, μ = 16;
(d) m = 4, ε = 0.02, ω0 = 2π, μ = 16.

Fig. 7. Two-dimensional phase portrait (a) and its Poincaré section (b) for a quasi-periodic regime; (c) map
of phases for the first oscillator in the Poincaré section formed by the intersection with the plane |a1| = |a2|,
for m = 1, ε = 1, ω0 = 3π, μ = 3.15.

direction of increase of |a2|. The phase ϕn relates to the first oscillator at t = tn, which is the nth
crossing. In computations, it is determined as ϕn = arg

(
a1(tn)

)
. The plot for the map of phases

contains two almost parallel lines, without intersection with the bisector, and it looks like the
map (1.3) for m = 1.

4. HYPERBOLIC CHAOS AND OTHER PHENOMENA

According to the theory of Shilnikov and Turaev, for m � 2 hyperbolic chaos is expected in the
system. Now we consider some features of formation of the hyperbolic chaotic attractors.

As mentioned above, in Figs. 4b–4d nearly above the boundary line of the blue sky catastrophe
bifurcation line one can observe chaotic dynamics that correspond at m � 2 to regimes of hyperbolic
chaos. Consider some illustrations of this kind of dynamics.

Figure 8 shows two-dimensional projections of phase portraits in the regime of hyperbolic chaos
for m from 2 to 4 (top row) together with the respective iterative diagrams for phases at successive
passages of the Poincaré section formed by the intersection with the surface |a1| = |a2|. Observe
that for m = 2 topologically the discrete-step evolution of the phases corresponds to the Bernoulli
map: one full revolution for the preimage ϕn gives rise to two revolutions for the image ϕn+1.
For m = 3 and m = 4 the transformation of the phases corresponds to the triple and quadruple
expanding circle map (1.3): one full revolution for the preimage ϕn gives rise to three and four
revolutions for the image ϕn+1, respectively. It supports the qualitative arguments that the case
m � 2 occurs here, associated with the presence of the Smale –Williams solenoid in the Poincaré
map according to the Shilnikov – Turaev theory.

Figure 9 shows, for the same values of parameters, the waveforms produced by two oscillators
constituting the system. Here we observe the process of exchange of excitation between the
subsystems according to its description in Section 2. The waveforms of the second subsystem are
smooth enough, and those of the first one have small-scale oscillations near zero, while the second
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Fig. 8. Two-dimensional projections of phase portraits and the map of phases of the generalized model (1.2)
in the regime of hyperbolic chaos for different values of index m: (a) m = 2, ε = 0.5, ω0 = 2π, μ = 3.15; (b)
m = 3, ε = 0.1, ω0 = 2π, μ = 3.15; (c) m = 4, ε = 0.02, ω0 = 2π, μ = 3.15.

subsystem has a large amplitude. They correspond to oscillations on the helical coils, which occur
in the vicinity of the small-scale limit cycles before the blue sky catastrophe. These fluctuations
are well seen in two-dimensional projections of phase portraits in Fig. 8.

Let us consider in detail each case of different values of index m. Firstly, we turn to a one-
parameter analysis. In Fig. 10a bifurcation diagrams for m = 2 and ω0 = 3π are shown. In Figs. 10b
and 10c magnified fragments are presented for vicinities of critical values of control parameters μBS

c

and μNS
c . As in the case m = 1, near the Neimark – Sacker bifurcation a soft birth of a torus takes

place. In the vicinity of the blue sky bifurcation, a hard birth of a two-frequency torus occurs.

Figure 10d–10i shows two-dimensional projections of phase portraits in the Poincaré section
formed by the intersection with the plane Re(a1) = 0. As one can see, at μ = 3.15 in the Poincaré
section the phase portrait is close to a smooth invariant curve, but it has a small loop extending from
the invariant curve. With increasing μ this loop grows, but in the diagrams for phases corresponds
topologically to the Bernoulli map (Figs. 10e and 10j, μ = 4.3). When we observe the transition to
nonhyperbolic chaos in the bifurcation diagram, in the Poincaré section this loop becomes larger,
and the map of phases becomes more complex and ceases to correspond to the Bernoulli map
(Figs. 10f and 10k, μ = 6.3). As one goes up to the Neimark – Sacker bifurcation line, this loop
in the Poincaré section disappears gradually. For the quasi-periodic regime (μ = 12) the iterative
diagram of phases tends to a straight line of unit slope.

Now let us turn to two-parametric analysis and consider in more detail the structure of the
parameter plane in the domain where hyperbolic chaos takes place. Figure 11 shows magnified
fragments of the chart of dynamical regimes of the model (1.2) for values of index m from 2
to 4. A wide homogeneous domain of gray color corresponds to hyperbolic chaos. Thus, with
increasing parameter μ, at μBS

c hyperbolic chaos emerges. With further increase of μ tongues of
synchronization appear on the charts, which gradually become wider and start to overlap. This
process accompanies the destruction (collapse) of hyperbolic chaos.

In [35], one of possible scenarios of birth and collapse of strange hyperbolic attractors associated
with Smale –Williams solenoids was suggested. The outlined mechanism of transition, as the control
parameter is varied, consists in merging orbits belonging to the attractor with orbits belonging to
the unstable invariant set, which are in one-to-one correspondence, in some parameter interval
of finite width through saddle-node bifurcations. The same type of behavior is observed in the
generalized model (1.2) for values of index m from 2 to 4.
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Fig. 9. Waveforms produced by the generalized model (1.2) in regimes of hyperbolic chaos for different values
of index m: (a) m = 2, ε = 0.5, ω0 = 2π, μ = 3.15; (b) m = 3, ε = 0.1, ω0 = 2π, μ = 3.15; (c) m = 4, ε = 0.02,
ω0 = 2π, μ = 3.15.

5. LYAPUNOV EXPONENTS AND VERIFICATION OF HYPERBOLICITY
Consider Lyapunov exponents for the flow system (1.2) at different m, employing the standard

algorithm [36, 37]. The computed values of the exponents λi, i = 1, . . . , 4 are collected in Table 1.
Note that for all three cases m = 2, 3 and 4 there is only one positive Lyapunov exponent. The
second one is zero within a numerical error. Using the Lyapunov exponents, we can estimate the
attractor dimension via the Kaplan –Yorke formula [38], see column DKY in Table 1. Observe that
the dimensions are remarkably close to each other for all three cases.

Table 1. Lyapunov exponents and Kaplan – Yorke dimension for the system (1.2) and the correspond-
ing Poincaré map.

m λ1 λ2 λ3 λ4 DKY Λ1 T λ1T

2 0.0439 −0.0001 −8.7588 −8.8606 2.0050 0.6793 15 0.6590

3 0.0810 −0.0001 −5.9709 −6.3186 2.0136 1.0729 14 1.1346

4 0.0817 −0.0003 −4.6255 −5.0960 2.0176 1.3635 17 1.3890

To perform the hyperbolicity test, a Poincaré map is required that represents the states of the
flow system at successive excitation stages. We define this map in the same way as it was done
previously, when the iteration diagrams for phases were plotted, with the section surface |a1| = |a2|.
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Fig. 10. Bifurcation diagrams and their magnified fragments in the vicinity of bifurcation lines of the
generalized model (1.2) for m = 2, ω0 = 3π (a)–(c); two-dimensional projections of phase portraits in the
Poincaré section formed by the intersection with the plane Re(a1) = 0 for different values of parameter μ:
(d) μ = 3.15, (e) μ = 4.3, (f) μ = 6.1, (g) μ = 8.8, (h) μ = 12.0, (i) μ = 16.0; and the corresponding map of
phases (j) μ = 4.3, (k) μ = 6.1, (l) μ = 8.8, (m) μ = 12.0.

The comparison of the Lyapunov exponents for the map with exponents for the original flow
system requires an average time T between the excitation stages, or, which is the same, between the
Poincaré section crossings. We have computed it by analyzing the trajectories of the flow system;
see the corresponding column in Table 1. Observe that the product λ1T equals approximately the
corresponding Λ1.

The first Lyapunov exponent for the Poincaré map, see column Λ1 of Table 1, equals
approximately ln m.

Let us now turn to the numerical test of hyperbolicity. The fast method of angles will be
applied, see reference [39] for details. In reference [40] the theoretical background for this method
is formulated.

All trajectories on a chaotic hyperbolic attractor are known to be of saddle type. This means
that their manifolds, i.e., expanding, contracting and neutral, if any, always intersect transversally,
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Fig. 11. Magnified fragments of the charts of dynamical regimes for the model (1.2) with m = 2 (a), 3 (b),
and 4 (c), which contain the areas of hyperbolic chaos and their vicinities.

and no tangencies between them can occur. The method of angles consists in testing for this
property: moving along a trajectory, we compute the angles between the subspaces tangent to
the trajectory manifolds. The hyperbolicity is confirmed if the angles never vanish, while for
nonhyperbolic attractors zero angles are encountered with a nonzero probability.

The fast method of angles [39] consists in passing forward and back in time along the same
trajectory. The forward-time pass is identical with that performed for the Lyapunov exponents
computation. The equations under consideration are integrated simultaneously with a required
number, say K, of copies of the corresponding variation equations. Periodically, the orthonormal-
ization of a matrix whose columns are solutions of the variational equations is performed. But
unlike the routine for Lyapunov exponents, the matrices after the orthonormalizations are saved
for further use.

For the backward-time pass, an adjoint variational equation has to be derived. For the system
under consideration we merely have to transpose the Jacobian matrix and invert its sign. The
adjoint variational equations are integrated in backward time. The number of equations is the
same as on the forward pass, i. e., K. In quite the same way solutions of the adjoint equations
provide columns of the matrix, which have to be periodically orthonormalized. This has to be done
exactly at the same trajectory points as on the forward pass. The resulting orthogonal matrices
together with the corresponding matrices saved on the forward pass are used for computation of
the angles. A matrix of pairwise inner products of their columns is built; then for each of its top
left submatrices the smallest singular value σi is computed, where i = 1, . . . ,K, and the angle is
computed as θi = π

2 − arccos(σi) [39].

As discussed above, the flow systems with m = 2, 3, 4 exhibit chaotic regimes with one positive
Lyapunov exponent, and due to the invariance under time shifts the second exponent is zero,
see Table 1. This means that the respective trajectories have one-dimensional expanding and
one-dimensional neutral manifolds. As we deal with the Poincaré map, we exclude the neutral
manifold from consideration. Thus, testing the hyperbolicity, we need to compute the angle between
expanding and contracting manifolds only. However, to actually exclude the neutral manifold in
the course of computations, we should project the solutions of the variational and adjoint equations
onto the Poincaré section surface, which complicates the routines. Instead we check if the original
flow system on the section surface fulfills the conditions imposed on Anosov flows [41, 42]. This
automatically implies hyperbolicity for the corresponding Poincaré map.

Thus, we need to compute two angles for the flow system: θ1 between the expanding subspace
and a direct sum of the neutral and contracting subspaces, and θ2 between a direct sum of the
expanding and neutral subspace and the contracting subspace. This means that K = 2, i. e., we
need to solve two copies of the variational as well as the adjoint equations. The hyperbolicity will
be confirmed if both of these angles never vanish.

Figures 12a–12c show the distributions of angles θ1 and θ2 computed for the system (1.2) m = 2, 3
and 4, respectively. In all three cases the distributions are well separated from the origin, which
confirms the hyperbolicity of the corresponding attractors.
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Fig. 12. Distributions of angles between subspaces tangent to trajectory manifolds of the system (1.2). Panels
(a), (b) and (c) correspond to m = 2, 3 and 4, respectively. The parameters correspond to those given in the
caption of Fig. 9. Angles are computed on the Poincaré section surface. The clear separation of the distributions
confirms the hyperbolicity of the corresponding Poincaré map in all three cases.

6. CONCLUSIONS

We have introduced a family of systems governed by ordinary fourth-order differential equations
in which, depending on an integer index m, different variants of the blue sky catastrophe occur. The
latter is a bifurcation event consisting in the appearance of a large-scale attractor after merging and
disappearance of a pair of small-scale stable and unstable limit cycles, when a control parameter
is varied. In accordance with the Shilnikov –Turaev theory, the type of the resulting attractor is
determined by the index m; its role is that it determines the m-fold expansion for an angular
variable acquired by the trajectory at the entrance to the region of spiral movements in the
phase space, where the former missing pair of limit cycles existed, in comparison with its initial
value at the exit from that region. The cases m = 1, 2, 3, 4 are discussed in some detail. For m
= 1, the result of bifurcation is the emergence of an attractive torus, and for m � 2 the result
is the appearance of hyperbolic chaos associated with the attractor corresponding to a Smale –
Williams solenoid in the Poincaré map. The topological type of the solenoid is determined by
the index m, which characterizes the rate of increase in the number of loops of the solenoid
winding for successive iterations of the Poincaré map. Results of a numerical study of the dynamics
are discussed and illustrated in detail, including the parameter plane charts of dynamic regimes,
bifurcation diagrams, portraits of the attractors of the flow system and of the Poincaré map. On the
charts of dynamical regimes, various nontrivial dynamical behaviors take place in a band between
the line corresponding to the blue sky catastrophe and the line associated with the Neimark –
Sacker bifurcation. Hyperbolic chaos occurs over the entire areas near the blue sky catastrophe
line. The destruction of hyperbolic chaos upon departure from these areas in other directions is
associated with the emergence of periodic dynamics represented by synchronization tongues in the
parameter plane. It is believed possible to implement systems representing the introduced family
of dynamical systems as electronic devices. This may be of interest when it comes to constructing
electronic generators characterized by insensitivity to variation of parameters, manufacturing errors,
interferences etc., since a fundamental attribute of hyperbolic chaos is its property of roughness
(structural stability).

APPENDIX

Full systems of ODE which were used in numerical experiments for different values of index m.
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