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Abstract. Complex biochemical networks are commonly characterised
by the coexistence of multiple stable attractors. This endows living sys-
tems with plasticity in responses under changing external conditions,
thereby enhancing their probability for survival. However, the type of
such attractors as well as their positioning can hinder the likelihood to
randomly visit these areas in phase space, thereby effectively decreas-
ing the level of multistability in the system. Using a model based on
the Hodgkin-Huxley formalism with bistability between a silent state,
which is a rare attractor, and oscillatory bursting attractor, we demon-
strate that the noise-induced switching between these two stable attrac-
tors depends on the structure of the phase space and the disposition of
the coexisting attractors to each other.

1 Introduction

Multistability is a universal, essentially nonlinear aspect of matter and its organi-
zation from molecular arrangements and chemical reactions to multistability in the
behavior, phenotype ete. [1], [2], [3], [4], [5]. This reflects the coexistence of stable
states or attractors in parameter space. The stability of these states on the other
hand depends on how quickly the system returns to a state following a perturbation.
For example, in gene regulatory networks, the coexistence of multiple coexisting at-
tractors (i.e. oscillations and steady states) has been associated with the existence of
stable phenotypes and the probability for survival [6], [7], cell decision during cellular
differentiation [8], [9], [10] etc. Particularly notable is for example the pronounced
multistability in excitable systems, such as systems describing neuronal dynamics
[11], [12], [13], [14], [15], [16]. It has been proposed that in neuronal systems for ex-
ample, multistability can play functional roles in short-term memory and maintaining
posture. Particularly interesting in these class is the mechanisms supporting multi-
stability of bursting regimes, which are not well understood or classified. Bursting
dynamics on the other hand is widespread in various biophysical processes, typical
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not only for neurons, but also pancreatic beta-cells, cardiac cells, etc. [17], [18]. Burst-
ing activity is the result of an interplay of ionic currents which are voltage-gated on
various timescales, very commonly captured through the Hodgkin-Huxley formalism
[19].

However, how often the stochastic system will visit distinct areas in phase space
where a particular attractor is situated depends on the type of the attractors, their
basin, as well as their relative positioning towards each other. For example, if the
basin of attraction of stable states are very small in comparison with the basins of
other coexisting attractors in the system, they will not be very sensitive towards noise
and system parameters so a sudden shift to such a regime is less likely to occur [20],
[21]. If on the other hand, the basins of attraction of a specific attractor does not touch
unstable fixed points (if they exists) and are located far away from such points, they
are called hidden attractors [22]. Recently, it has been shown that multistability is
connected with the occurrence of these unpredictable hidden attractors [23]. Numer-
ical localization, especially of the hidden attractors is not straightforward since there
are no transient processes leading to them from the neighborhoods of unstable fixed
points and one has to use special analytical-numerical procedures [22]. However, the
identification of hidden attractors is the major issue from aspect of applications since
the knowledge about the emergence and properties of hidden attractors can increase
the likelihood that the system will remain on the most desirable attractor and reduce
the risk of the sudden jump to undesired behavior. This is particularly important for
biophysical and biochemical systems, since these processes are inherently noise due
to small number of molecules or external perturbations [25], [26]. The relationship
between hidden attractors and multistability [23], as well as for the rare attractors
[27] has been shown mainly for nonlinear dynamics models such as the Chua system,
van der Pol oscillator, etc., whereas the investigations of this problem in the context
of biophysical models is relatively limited [28].

Thus, in the present work we consider models of neuronal dynamics that exhibit
bistability between silent and bursting state. We particularly focus on the case when
the coexisting dynamical regimes are unequal, such as the silent state is a rare, and
bursting state is a hidden, or a self-excited attractor, and investigate the conditions
leading to noise-induced switching.

2 Hodgkin-Huxley-like models with rare and hidden attractors

In the current section we describe two models in which bistability between silent and
bursting state is described. Based on sufficient generalization, it can be assumed that
for this type of bistability the basin of attraction of the stable equilibrium should be
small in respect to basin of attraction of the bursting attractor. This is due to the
fact that the equilibrium state is located on the intersection of the fast and the slow
manifolds of the system, whereas at the same time, the bursting attractor is located
on a part of the branch of the fast-manifold. Thus, the coexisting equilibrium state
should be situated beside or inside of the bursting attractor. In this way, the basin of
attraction of the silent state will be small, rendering the stable steady state as a rare
attractor.

2.1 Model of a leech neuron

As the first example of the model that displays bistability between silent and bursting
states, we consider a model of leech neuron, which was suggested in [12]. The simplified
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Table 1. Parameters of the model (1).

C= 05 7 = 0.0405 Sec
gNa = 250 gcas = 80 Gleak = 15.362
VNe = 0.045V Veas = 0.135V Vieak = -0.0502 V

Br= 0031V Bpces = 006V

leech neuron model is described by the following equations:

CV = —Ina(V,hna) = Icas (Vi heas, mcas) = Liear(V),

Ttha = foo(500a Bh7 V) - hNaa (1)
TmCaS'T.nCaS' = foo(_4201 004727 V) — McCa8s,

Thcashcas = foo (360, Brcas, V) — hcas-

Here V represents the membrane potential of the cell, the functions Iy, Icas, licak
define three intrinsic currents of the system: the fast sodium Iy, the slow calcium
Ioqs voltage-dependent currents:

Ina(V,hna) = gnafo (—150,0.028, V) hna (V — Vaa), (2)

Icas(Vihcas, Mcas) = geasMeashcas(V — Veas), (3)

and the leak current
Ileak:(v) = gleak(v - Vieak)- (4-)

The description of the model parameters (1) as well as their physiological relevance
are given in details in [12]. Shortly, the function f. (A, B,V) is a steady-state acti-
vation (inactivation) function of a voltage-gated ionic current given by the sigmoidal
function: )

fx(A,B,V) = 11 A(V+B) (5)

Here B is the half-activation (half-inactivation) membrane potential at which f., =
0.5. The voltage-dependent time constants for the activation and inactivation vari-
ables of the calcium current, following to [12], we take from [29]:

TmcCas = 0.005 + 0.134f~ (—400, 0.0487, V),

Thoas = 0.2 + 5.25 5 (—250,0.043, V).

One can see that the inactivation of the calcium current, hoq,g, is the slowest variable
in the model (1), whereas the voltage on the membrane V represents the fastest
variable.

In [12], areas of coexistence between bursting and silent regimes in the parameter
plane (gicak, Vieak) have been determined. By fixing the parameters inside the noted
area of bistability, we can estimate the structure of phase space in this parameter
region.

For parameters, defined in table 1 the model (1) has three equilibrium points:

EP' = (VO 1, myag: htas) = (—47.798,0.99977,0.43752,0.012216),
EP? = (V% b3, m&, s, hits) = (—36.326,0.93481, 0.98972,0.00019887),
EP? = (VO 1%, m& ¢, his) = (—27.237,0.13223,0.99977,0.0000075).

The first of them EP! is stable, and the second EP? and the third EP? are unsta-
ble. In order to visualize coexisting dynamical regimes we construct their basins of
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Fig. 1. a) and b) fast and slow manifolds (green solid and dot lines), 2D-projection of the
bursting attractors (purple line) and equilibrium points (black and white circles with respect
to the unstable and stable equilibria). The basins of attractions of the coexisting attractors
are shown with red (basin of attraction of stable equilibrium point) and light violet color
(basin of attraction of the bursting attractor). ¢) and d) Representative time series of the
fast and slow variables of the system for the coexisting dynamical regimes; phase trajectory
is purple, stable equilibrium EP! is red line and unstable equilibrium EP? is dashed black
line. All parameters correspond to Table 1.

attraction and analyze two-dimensional cross-sections in the vicinity of each equilib-
rium point. In Fig. 1 a) and b), the corresponding planes for varying initial conditions
are shown. Fig. 1 a) corresponds to the initial conditions in the vicinity of the stable
equilibrium, whereas the initial conditions of the other two variables, hy, and mgqs,
were fixed exactly at the equilibrium point EP!. On the other hand, Fig. 1 b) cor-
responds to the vicinity of unstable equilibrium EP?. From Fig. 1 a) it can be seen
that the largest portion of the plane is occupied by the basin of attraction of bursting
attractor. Within this basin of attraction however, the basin of the stable equilibrium
is represented with a relatively small area, located in the vicinity of unstable point
E P2, The structure of the basins of attraction in the vicinity of unstable equilibrium
EP3 is the same as Fig. 1 b). Thus, starting from the vicinity of stable equilibrium
EP', the trajectory in phase space evolves towards the equilibrium point, whereas
when starting in the vicinity of unstable equilibria EP? and EP3, the phase-space
trajectory asymptotically converges to the bursting attractor (Fig. 1 a) and b)). This
indicates that the coexisting attractor is self-excited. Thus, if the transient starts
from randomly distributed initial conditions inside a cube in phase space that covers
both attractors (Vo[—55 —40], hna[0 — 1.05], mees[0.2 — 1.05], hoas[0 —0.014]), then
the probability to reach the stable equilibrium point approximates 1.11%, rendering
the random ”finishing” of this attractor a rare event. This probability of course scales
with the size of the cube: increasing the size will conversely decrease this probabil-
ity. The stable equilibrium point EP! can therefore be classified as a rare attractor.
Moreover, as depicted by the time series of fast and slow dynamical variables, V' and
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Table 2. Relevant parameters for the model (6).

7= 0.02 Sec 7s = 35 Sec o= 093
gca = 3.6 gk = 10.0 gs = 4.0 gr2 = 0.2
Vea = 25.0 mV Vk = -75mV
0 = 12.0 mV 0, = 56mV s = 10.0 mV 0p= 1mV
V= -200mV V,= 16.0mV Vs= -35mV Vp= 47mV

hcas, in Figs. 1 ¢) and d), the stable equilibrium and the bursting attractor display
intersection in these projections.

2.2 A modified Sherman model

We next consider a modification of the model suggested by Sherman and Rinzel [17]
that describes the calcium dynamics of the beta-cells. The modifications introduced in
[28] ensure a coexistence between bursting and silent states. This modified Sherman
model has the form:

TV = —Ica(V) = Ix(Vin) — Ix2(V) — Is(V, S),

™ = J(foo(vna ana V) - 71), (6)
Tss = fOC(VS,es,V) - S.

Here, V' also represents the membrane potential of the cell, n is the fraction of open
voltage-gated K T-ion channels, whereas the functions Ic,(V), Ix(V,n) define two
intrinsic currents, the fast calcium I¢, and the fast potassium [x currents:

IC'a(V) = gCafoo(Vma 9m7 V)(V - VCa)7 (7)
I (Vin) = gxn(V — Vi), (8)

S is the fraction of open voltage-gated C'a®*-ion channels, which directly acts on the
concentration of Ca?*. The third current Is(V,S) is a Ca®*-sensitive slow potassium
current, which is directly activated by Ca?*.

Is(V,8) = gsS(V — Vi), 9)

The gating variables for n and S are the opening probabilities of the fast and slow
potassium currents described by the sigmoidal function (5).
Thus, this modified beta-cell model has the new potassium current is the form:

T2 (V) = graboc(Op, Vo, V)(V = Vi), (10)
where 1
poo(AaBa V) = ¢A(VEB) y o—A(V+B)" (11)

It has been shown that in a certain parameter interval, coexistence between the
bursting attractor and stable equilibrium point is possible [28] and corresponding
parameters in Table 2 are presented.

In this parameter range, the model (6) has one stable equilibrium point (Vg, ng,
S0)=(-49.084, 0.0027105, 0.19648). In Fig. 2 examples of the coexisting attractors
are presented. In Fig. 2 a) the fast-slow manifolds, the projection of the bursting
attractor and its basin of attraction of the modified model (6) are shown. The basin of
attraction in this case was constructed using Poincaré section for the n = 0.02 plane,
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Fig. 2. a) fast and slow manifolds (solid and dashed black lines, respectively), 2D-projection
of coexisting the bursting attractor (purple line) and silent state (red trajectory goes to
equilibrium) with their basins of attraction; b) and c¢) time series of coexisting regimes (red
trajectory starts from the basin of the stable equilibrium, purple trajectory starts from the
basin of the bursting attractor). V, = =47 mV, gx2 = 0.2.

and initial condition of the third variable n was chosen exactly at the equilibrium
point, ng = 0.00275. The characteristic S-form of the fast manifold has an additional
bending in which the equilibrium point of the system becomes stable (Fig. 2 a)). This
bending in turn determines the basin of attraction of the equilibrium stable point
(red color). Outside of this area, the basin of attraction of the bursting attractors
is present (purple area). Since the area of attraction of the stable equilibrium point
is very small, we can infer that this attractor is a rare attractor. If we again take
randomly distributed initial conditions inside a predefined cube in phase space, which
covers both attractors (Vo[—65——20], ng[0—0.12], Sp[0.17—0.2]), then the probability
of realization of the stable equilibrium point in this case equals 5.5%. Starting from
the vicinity of the single equilibrium point, however, it is possible to reach only this
equilibrium (Fig. 2 a)). This in turns allows us to conclude that the bursting attractor
is hidden in this case.

3 Noise-induced switching in multistable systems with rare and
hidden attractors

We next study the influence of noise on the dynamics of these systems when bistability
between bursting oscillatory regime and stable steady state is present. Generalized
Hodgkin-Huxley-type of model with noise can be written in the form:

V =F(V,..)+V2Dn(t) = > I;/7 + vV2Dn(t), (12)

where n(t) depicts an additive noise source, which is a Gaussian white noise with
zero mean and D is the noise intensity. In Hodgkin-Huxley-type of models the noise
necessarily mimics fluctuations of the membrane voltage, and not the probability of
opening of the ion channels and is therefore commonly added to the first equation.
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Fig. 3. a) and b) Time series of the fast variable V', and the corresponding c¢) and d)
stationary distribution for model (1) with and different noise intensity: a), ¢c) D = 0.005; b),
d) D = 0.245.

It is well-known that in multistable system, switching between coexisting attrac-
tors can be observed for certain noise levels [9], [20], [21], [30]. The previously de-
scribed system thus make an interesting case study, given that the attractors are rare
or hidden, and the dynamics of the system in the presence of noise is non-intuitive
1. We thus first consider the leech neuron model (1), where the coexistence between
a rare stable steady state and bursting attractor was observed. For initial condi-

1 We can notice recent paper [24] where hidden attractors in the present of noise are
studied.
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tions exactly at the stable equilibrium point and small noise intensities (Fig. 3 a),
¢), D = 0.005), the system does not leave the rare attractor and correspondingly,
the stationary distribution has only one maximum situated in the vicinity of stable
equilibrium point EP!. Thus, the phase trajectory is fluctuating in the vicinity of
the stable point. When the noise intensity is sufficiently increased (Fig. 3 b), d),
D = 0.245), the dynamics of the system switches between the rare stable equilibrium
and the bursting oscillations. This in turn corresponds to a bimodal distribution: even
though the minor peak corresponds to the trapping of the trajectory in the bursting
attractor, the major peak that represents the persistence of the phase space trajectory
in the vicinity of stable equilibrium still persists.

Similarly, for the modified Sherman model (6), when starting from the rare at-
tractor and introducing small noise intensity in the system, the trajectory fluctuates
in the vicinity of the equilibrium, and can not reach bursting attractor (Fig. 4 a),
D = 0.02). The stationary distribution in this case is also unimodal, concentrated in
the vicinity of stable equilibrium point (Fig. 4 ¢)). However, in the presence of in-
creased noise intensity, the situation significantly changes: initially, the system states
in the vicinity of the stable equilibrium (¢ = (0 — 15)), after which the system tran-
sits to the bursting attractor and does not switch back (Fig. 4 b)). This absence of
switching between the two attractors in the presence of noise could be a result of: (i)
the small basin of attraction of the stable equilibrium; (ii) the equilibrium point is
located far enough from fast-slow manifolds where the bursting attractor is situat-
ing making the switching unlikely; and (iii) noise influences the variable representing
the membrane potential of the cell V. However, the equilibrium point is distanced
in direction of the variable S, thus the noise fluctuations can not induce a shift of
the phase space trajectory into the basin of attraction of the equilibrium point. This
means that when the bursting attractor is hidden and coexists with a rare attractor,
stochastic switching can not be induced between both stable attractors.

We next estimated the possibility to realise the stochastic switching between the
coexisting attractors as a function of noise intensity (D). In Fig. 5, the residence
time that the phase space trajectory spends in the vicinity of the stable equilibrium

is plotted as a ratio to the total time series length, p = % As shown before,
for small noise intensities that phase space trajectory resides in the vicinity of the
stable equilibrium for both models (p = 1). With increase of D however, a threshold
is observed for which switching to the bursting attractor occurs (p # 1). For the
first model, this threshold is significantly less then for the second, and is connected
with the size of the basin of attraction of the equilibrium point (which is smaller for
the leech neuron model). After the trajectories cross this threshold, there is still a
range of noise intensities for which they will still switch between the bursting and
the equilibrium state, and this time approximately corresponds to the probability to
reach equilibrium for randomly initial conditions. In the Sherman model however, the
transition to the bursting attractor after the threshold is irreversible (p = 0).

4 Conclusions

The stochastic switching behavior of bistable system where coexistence of bursting
hidden, or self-excited attractor with rare attractor exist are shown. We demonstrate
that noise can induce significantly different dynamical behavior, depending on the
structure of the phase space and the positioning of the coexisting attractors to each
other. In the case when silent state and bursting attractor are distanced from each
other in the direction of dynamical variable which are not influenced by noise, no
stochastic switching will be observed between the coexisting attractors. An irreversible
jump from the rare silent state to the bursting attractor will be observed for low noise
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Fig. 4. a) and b) Time series of the fast variable V, and the corresponding c¢) and d)
stationary distribution for model (6) with and different noise intensity: a), ¢) D = 0.017; b),
d) D =0.5.

intensities. In the case when the dynamical variables are not spatially separated on
the manifolds, stochastic switching between both attractors will be observed.

5 Acknowledgements

In this research the study of hidden attractors was supported by the Russian Science
Foundation project 14-21-00041. NVS thanks also DAAD for the financial support
her scientific visit MPI MP in 2016 (Project Number 18.694.2016).



10 Will be inserted by the editor

IW a) 0.1 b)
p P
Ot 0
0 0.1 02D 0 0.1 02D

Fig. 5. Residence time in the silent state as a function of the noise intensity D. The red line
corresponds to the model (1), and the black line - to the model (6). b) represents a zoomed
region from a).
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