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Abstract—In the present paper we consider and study numerically two systems based on model
FitzHugh – Nagumo neurons, where in the presence of periodic modulation of parameters it is
possible to implement chaotic dynamics on the attractor in the form of a Smale – Williams
solenoid in the stroboscopic Poincaré map. In particular, hyperbolic chaos characterized by
structural stability occurs in a single neuron supplemented by a time-delay feedback loop with
a quadratic nonlinear element.
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1. INTRODUCTION

The FitzHugh – Nagumo model [1, 2] provides one of the examples of the interdisciplinary
approach inherent in the theory of oscillations and waves [3–6], when similar equations are used to
describe objects of different physical nature, so that the understanding of phenomena taking place
in one field of science deepens and enriches the understanding of the behavior of objects in another
field. With respect to the FitzHugh – Nagumo model, we are talking about equations providing a
phenomenological description of a neuron which are also applicable to an electronic circuit known
as the Bonhoeffer – van der Pol oscillator.

Construction of different variants of composite systems based on elements described by the
FitzHugh –Nagumo equations, including systems with time-delay feedback, is of interest for many
reasons. Firstly, this is a way for model description of real phenomena that can occur in natural
neural systems. Secondly, analog simulation of complex neural systems by means of electronic
circuits is possible, which essentially corresponds to the initial premises of FitzHugh’s paper [1]
appealing to the analogy with the Bonhoeffer – van der Pol oscillator, and to Nagumo’s work [2]
based on reproduction of phenomena accompanying the propagation of impulses in the axon by
means of a transmission line on tunnel diodes. Thirdly, studies of coupled systems and time-delay
systems based on model neurons can help to reveal possibilities of phenomena that are known in the
modern theory of dynamical systems at the level of abstract mathematical concepts, but still await
detection and application in real-world systems. This direction of research can open up prospects
of designing new technical devices that reproduce some properties of natural neural systems, as
well as devices with new functionalities.

In this paper we will discuss uniformly hyperbolic attractors, the objects in state space of
dynamical systems introduced in mathematical theory in the 1960s–1970s [7–9]. The specific nature
of these attractors is that they are composed exclusively of saddle trajectories, in which the
contracting and expanding invariant subspaces can be distinguished in the tangent space of vectors
of infinitesimal perturbations. The first invariant subspace is formed by vectors, the norms of which
decrease exponentially in direct time, and the second is formed by vectors whose norms decrease
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exponentially in reverse time. Thus, an arbitrary vector of small perturbation is represented by a
linear combination of vectors belonging to both of these subspaces. The sets of representing points
approaching a given trajectory in direct or reverse time correspond, respectively, to the stable and
unstable manifolds of this trajectory. For a hyperbolic attractor these manifolds can intersect, but
must not have tangencies.

The fundamental mathematical fact is that the hyperbolic chaos has a property of roughness, or
structural stability. After the studies of Andronov and Pontrjagin [3, 10], in the theory of oscillations
it is customary to postulate that of the primary theoretical and practical interest are precisely the
rough systems that demonstrate motions, which do not change qualitatively with a little variation
of parameters and functions in the evolution equations. Within the framework of chaos theory, this
property seems extremely important for natural systems and technical applications, since it would
ensure insensitivity of the chaos characteristics to inaccuracy in setting parameters, manufacturing
errors, noise and disturbances. However, as the theory of dynamical systems and its applications
evolved, it became clear that numerous examples of chaotic dynamics, which occur in various fields
of science and technology, do not satisfy this property. The lack of structural stability leads to
observable phenomena of destruction of chaos accompanied by the appearance of “windows of
regularity” under small variations in the system parameters; this is associated with the concept
of quasi-attractor [9]. It was not until most recently that some physical examples of systems with
structurally stable hyperbolic chaos were proposed and implemented [11, 12].

Recently, it has been shown that chaotic dynamics associated with hyperbolic attractors such
as the Smale –Williams solenoid in the Poincaré map can be designed on the basis of coupled
FitzHugh –Nagumo elements alternately excited by external parameter modulation [13, 14]. In
the present paper, we will also consider a system with hyperbolic chaos using a single FitzHugh –
Nagumo neuron supplemented with time-delay feedback. (Other examples of nonlinear systems,
where time-delay feedback was used to implement hyperbolic chaos, were discussed in [15–20].)

In Section 2, we recall the model and results of Ref. [13], drawing on the analysis of the parameter
space structure by means of a chart of regimes composed with the help of Lyapunov exponents
computations. Section 3 introduces a system with modulation of the control parameters based
on a single model FitzHugh –Nagumo neuron with a time-delay feedback loop with quadratic
nonlinearity. It is shown that the dynamics of such a system is in many respects similar to that
in the model [13]. Particularly, in a wide range of parameters, the stroboscopic map possesses a
chaotic hyperbolic attractor in the form of a Smale –Williams solenoid. Section 4 presents results of
a numerical test of the hyperbolic nature of attractors in the system with time-delay by numerical
calculation and analysis of statistics of the angles of intersections of the expanding and contracting
manifolds of trajectories at the attractor. In the Conclusion we summarize results of the study and
briefly discuss some prospects for research on systems based on model neurons using the proposed
techniques and analog simulation by means of electronic circuits.

2. SMALE-WILLIAMS ATTRACTOR IN A SYSTEM OF TWO COUPLED
ALTERNATELY EXCITED FITZHUGH-NAGUMO NEURONS

Equations of an individual FitzHugh –Nagumo subsystem have the form

ẋ = cx − x3
/
3 − y,

ẏ = ax − by + I,
(2.1)

where x and y are the dynamical variables that have the meaning of the membrane potential and
the slow recovery variable, respectively, a, b and c are parameters considered as constant in the
original model, and I is the external current across the membrane.

In [13], a model was introduced composed of a symmetric pair of FitzHugh –Nagumo elements

ẋ = c0x − 1
3
x3 − y,

ẏ = (a0 + a1 sinΩt)x − (b0 + b1 cos Ωt)y + εu̇2,

u̇ = c0u − 1
3
u3 − v,

v̇ = (a0 − a1 sinΩt)u − (b0 − b1 cos Ωt)v + εẋ2,

(2.2)
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where the variables x, y relate to the first subsystem, and u, v to the second, and the parameters of
the subsystems are periodically modulated in such a way that it provides their alternate activity;
the coupling is selected through quadratic nonlinearity to ensure the transfer of excitation from
one neuron to another accompanied by doubling of the phase of oscillations.

Equations (2.2) have an obvious symmetry with respect to the substitution

x → u, y → v, u → x, v → y, t → t + π/Ω. (2.3)

The functioning of the system proceeds as follows. Let the oscillations of the first subsystem in
the active stage (the first half-period) have a certain phase ϕ, that is, x ∼ cos(ω0t + ϕ). In half a
period, the second oscillator becomes active. The stimulus for its initial excitation is the second
harmonic of the signal produced by the first oscillator, ẋ2 ∼ sin2(ω0t + ϕ) = 1

2 − 1
2 cos(2ω0t + 2ϕ),

so the resulting oscillations inherit the phase 2ϕ+const. In the absence of resonance for small-
amplitude oscillations [22] the transfer of the excitation from the first oscillator to the second one
at the doubled frequency 2ω0 is facilitated by the fact that the nonlinearity parameter is chosen
negative, β < 0. Because of the “soft spring” principle, the oscillation frequency of the first oscillator
is less than ω0, and the excitation at the second harmonic with doubled phase of the oscillations
is still transmitted. When the active stage of the second oscillator comes to an end, it transmits
the excitation to the first one, which just becomes active exactly in the same manner, and so on.
Thus, one step of the excitation exchange is accompanied by doubling of the phase variable defined
modulo 2π, in accordance with the expanding circle map (Bernoulli map). As the phase volume is
compressed in other directions, this corresponds to the presence of an attractor in the form of a
Smale – Williams solenoid in the phase space.

Figure 1 shows waveforms for the variables x and u of the system (2.2) with a set of parameters
corresponding to the mode of operation described above. The waveforms have typical form inherent
in many neuron models called “bursts”, sequences of rapid oscillations of the membrane potential
variable, alternating with regions of smooth decay/recovery of the activity. In our case, the
appearance of successive bursts is due to the periodic modulation of the parameters of the
subsystems, and here the phases of the oscillations (“spikes”) vary from one to another burst
according to the Bernoulli map, i. e., chaotically.

Fig. 1. Waveforms of dynamical variables x(t) and u(t) on four periods of modulation of parameters for the
system (2.2). Values of the parameters: a0 = a1 = 1.5, b0 = b1 = 0.1, c0 = 0.2, ε = 0.3, Ω = 0.05.

Since the system examined is nonautonomous, with periodic variation of the coefficients, we can
describe the dynamics in discrete time by means of the Poincaré stroboscopic map. In our case,
taking into account the symmetry of the system, it is appropriate to use the map in a half-period
of modulation, determining the state vector at the moments of time tn = πn/Ω = nT as

Xn = (x1, x2, x3, x4)n =

⎧⎨
⎩

(
x(nT ), y(nT ), u(nT ), v(nT )

)
, if n is odd,(

u(nT ), v(nT ), x(nT ), y(nT )
)
, if n is even.

(2.4)
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The four-dimensional Poincaré map may be written formally as

Xn+1 = FT/2(Xn). (2.5)

It can be realized as a computer program that integrates Eqs. (2.2) on a half-period of the
modulation.

Figure 2a shows a phase portrait of the attractor of the map (2.5), which is a two-dimensional
projection of the Smale –Williams solenoid. The inset is a magnified fragment resolving the
transverse fractal structure inherent in the solenoid. The fact that each step of evolution in discrete
time is accompanied by doubling of the angular coordinate on the solenoid filaments is illustrated
by the diagram in Fig. 2b. Here, along the coordinate axes, the values of the angular variable are
plotted at the nth and (n + 1)st moments of discrete time as obtained from the results of numerical
integration of Eqs. (2.2) on successive modulation periods with the formula ϕn = arg[(x1 + ix2)]n.

Fig. 2. Two-dimensional projection of the Smale –Williams attractor for the Poincaré map (a), where the
transverse structure of the solenoid is shown with magnification by the inset, and the diagram of the phases of
the spike oscillations corresponding to successive bursts, which illustrates the doubling of the angular variable
in a half-period of the modulation (b). Parameters: a0 = a1 = 1.5, b0 = b1 = 0.1, c0 = 0.2, ε = 0.3, Ω = 0.05.

Four Lyapunov exponents of the attractor found for the map (2.5) from the results of
computations using the numerical solution of (2.2) and the corresponding set of variational
equations, with Gram –Schmidt orthogonalization of the perturbation vectors, are

Λ = {0.670, −1.054, −4.13, −18.16}. (2.6)

The presence of a positive exponent indicates a chaotic nature of the dynamics. Its proximity to
ln 2 is due to the fact that the angular variable undergoes doubling on successive iterations. The
other exponents are negative and are responsible for formation of the transverse fractal structure of
the solenoid. To estimate the dimension of the attractor, we can use the Kaplan –Yorke formula [23–
25]

D = m + |Λm+1|−1
m∑

i=1

Λi, (2.7)

where in the general case m is defined so that Sm =
m∑

i=1
Λi > 0, but Sm+1 =

m+1∑
i=1

Λi < 0. In our

situation it gives DKY = 1 + Λ1/|Λ2| ≈ 1.64.
Figure 3 shows a plot of Lyapunov exponents of the map (2.5) versus parameter c with other

parameters constant. It should be noted that there is a wide range in which the exponent Λ1 remains
approximately constant and close to ln 2. As can be seen, this region, where chaotic dynamics is
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determined by the Smale –Williams attractor, is continuous; this observation testifies in favor of
the structural stability of chaos. At the left and right edges we can see a distinct behavior of Λ1
with dips in the graph, which correspond to the windows of periodicity in the region where chaos
is nonhyperbolic. The range on the right side of the graph, where the Lyapunov exponent is zero
(up to calculation accuracy), corresponds to quasi-periodic dynamics.

Fig. 3. Lyapunov exponents of the map (2.5) versus parameter c0 with Ω = 0.05, ε = 0, a0 = a1 = 1.5,
b0 = b1 = 0.1.

Figure 4 shows a chart of regimes of the system (2.2) in the parameter plane. For its computation,
the selected region was scanned with a small step in two coordinates. Each pixel is color-coded in
accordance with the regime diagnosed at the respective point, which occurs as the equations are
numerically integrated. If all the exponents are negative, then it corresponds to a regular periodic
mode, namely, an attractive fixed point or a periodic cycle of the Poincaré map. The closeness
of the largest exponent to zero indicates quasi-periodic dynamics, which in the phase space of
the Poincaré map corresponds to an attractive closed invariant curve. The presence of a positive
exponent indicates existence of chaotic attractor, which may be hyperbolic or nonhyperbolic.

Fig. 4. Chart of regimes of the system (2.2) on the parameter plane (ε, c0). Regions of different modes are
marked with colors identified by analysis of the spectrum of Lyapunov exponents as explained in the text. The
white region SW (Λ1 ≈ ln 2) is roughly associated with the hyperbolic chaotic Smale –Williams attractor; the
black region is nonhyperbolic chaos (Λ1 > 0); the red region P corresponds to the periodic dynamics (Λ1 < 0),
and the yellow region Q, to quasi-periodic dynamics (Λ1 ≈ 0).
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Plotting the chart as a diagnostic tool for distinguishing the hyperbolic Smale – Williams
attractor of the Poincaré map, we exploit the proximity of the positive Lyapunov exponent to the
value ln 2 corresponding to the Bernoulli map. Although this cannot be considered as an accurate
quantitative criterion, control calculations confirm that with this method the hyperbolicity region is
determined rather correctly: iteration plots for the angular variable at the points of the found area
qualitatively correspond to Fig. 2b (a graph in the form of two branches close to straight lines with
a slope coefficient of 2). Hyperbolic chaos, in accordance with its inherent property of structural
stability, occupies a continuous area in the parameters plane, denoted as SW . The hyperbolic
nature of chaos was also confirmed by computational verification of absence of tangencies of stable
and unstable manifolds for trajectories on an attractor as described in [13, 14]. (In the present
paper, a special section (Section 4) is devoted to this criterion, adapted for the time-delay system.)

The exit from the SW region by variation of parameters is associated with different scenarios
of the destruction of hyperbolic chaos [26].

If we move to the left in the parameter plane, then, as we approach the boundary of hyperbolicity,
on the iterative diagrams for the angular variable we can observe the appearance of inflection points
(local places of zero slope). Accordingly, the distribution of the invariant measure along the filaments
of the solenoid becomes nonsmooth, and singularities arise, which corresponds to violation of the
uniform hyperbolicity.

As we approach the lower boundary of the region, we see an increase in the width of the toroidal
domain containing the Smale –Williams solenoid, and then what happens can be described as
“disappearance of the donut hole”. The angular variable in this case is not defined everywhere,
because of which on the iterative diagram exclusive points appear that do not fall on the pronounced
branches, which correspond to the expanding circle map of Bernoulli. A similar scenario occurs when
we pass through the upper boundary. After exit from the hyperbolicity domain, the topological
nature of the map for the angular variable changes; instead of the Bernoulli map with two branches,
a single-valued circle map is observed. Such a map generates either quasi-periodic dynamics or
periodic behavior corresponding to the Arnold synchronization tongues [25, 27, 28]. The respective
areas Q and P occupy a broad zone at the top part of the chart. In the upper right corner of the
chart we can see a characteristic picture inherent in the classical circle map, where nonhyperbolic
chaos takes place; the area contains periodicity in narrow bands and shrimp-like formations [29].

3. SMALE-WILLIAMS ATTRACTOR IN THE DYNAMICS OF A SINGLE NEURON
WITH TIME-DELAY FEEDBACK

The idea of constructing a model with hyperbolic chaos on the basis of a single neuron with
parameter modulation is to modify the system considered in the previous section replacing the
partner system by transmission of excitation from one and the same oscillator by means of an
additional time-delay feedback loop. Namely, let us consider time-delay equations of the following
form:

ẋ = c0x − 1
3
x3 − y,

ẏ = (a0 − a1 sinΩt)x − (b0 − b1 cosΩt)y + εẋ2(t − τ).
(3.1)

The delay time τ may generally be regarded as an additional parameter, which can be varied to
obtain different dynamical behaviors, but we will usually assume that it is equal to the half-period
of modulation τ = π/Ω.

It is important to emphasize that systems with delay are characterized by an infinite dimension
of the phase space [24, 30, 31]. In fact, in order to specify a state of the system (3.1) that allows
uniquely determining the subsequent dynamics, it is necessary to set not only the values of x and
y at an initial moment of time, but also to set the function ẋ(t − τ) on the previous time interval
of duration τ .

For the system (3.1) we can determine the stroboscopic map for the period T = 2π/Ω:

Xn+1 = FT (Xn), (3.2)

but, in contrast to the map (2.5), the vector Xn now must be interpreted as an element of an
infinite-dimensional space that defines a system state at tn = nT .
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The principle of the system functioning is similar to that discussed in the previous section.
Let oscillations in the active stage have a certain phase ϕ, that is, x ∼ cos(ω0t + ϕ), and let the
generated signal be transmitted to the feedback channel. After the stage of oscillations damping
and a new transition to the activity stage, the excitation of the oscillator is stimulated by the
second harmonic of the signal passed through the feedback loop with quadratic transformation
according to ẋ2(t − τ) ∼ −1

2 cos(2ω0t + 2ϕ + const) + . . ., so that the oscillations get the phase
2ϕ+const. Then the process repeats, and the phase which is transformed at each next modulation
period evolves according to the double expanding circle map. In the presence of compression along
other (transverse) directions, this corresponds to the attractor that is the Smale –Williams solenoid
embedded in the infinite-dimensional phase space of the time-delay system.

Figure 5 shows the waveform of the variable x, which corresponds to the described regime. The
time dynamics manifests a sequence of bursts that alternate with periods of activity suppression.
Bursts follow with the period of modulation of parameters, and the phases of oscillations (spikes)
from one stage of activity to the other vary chaotically, in accordance with the Bernoulli map. Since
the parameters a0,1, b0,1, c, ε, Ω are chosen numerically the same as for the illustrative calculations
in the previous section, the waveform is very similar to those in graphs for subsystems of the finite-
dimensional model in Fig. 1.

Fig. 5. Waveform of the dynamical variable x(t) on four periods of parameter modulation for the system with
time-delay (3.1). The values of the parameters are a0 = a1 = 1.5, b0 = b1 = 0.1, c0 = 0.2, ε = 0.3, Ω = 0.05.

In Fig. 6a a portrait of an attractor for the stroboscopic map is shown. This is a two-dimensional
projection of the Smale –Williams solenoid from the infinite-dimensional phase space of the system.
It has a fractal transverse structure of filaments, which can be seen on the inset showing this
structure with magnification. The diagram in Fig. 6b, obtained from the numerical integration of
Eq. (2.2) over a large number of modulation periods, illustrates the transformation of the oscillation
phases in successive stages of activity in accordance with the double expanding circle map. The
picture of the attractor projection and the diagram for the angular variable demonstrate an obvious
similarity with the graphs for the finite-dimensional model in Fig. 2.

For a system with delay, the total number of Lyapunov exponents is infinite. We can find the
first few exponents, performing simultaneously a numerical solution of Eq. (3.1) together with the
appropriate number of variational equations and with Gram– Schmidt orthogonalization of the
perturbation vectors in the framework of the traditional Benettin method adapted for time-delay
systems [24, 32]. The Lyapunov exponents calculated for the attractor shown in Fig. 5 are the
following:

Λ = {0.677, −0.920, −2.39, −2.91, −3.25, −3.40, −3.63 . . .}, (3.3)

and the dimension of the attractor in the stroboscopic section according to the Kaplan –Yorke
formula is DKY = 1 + Λ1/|Λ2| ≈ 1.74.

Figure 7 shows three largest Lyapunov exponents of the stroboscopic map of the system with
time-delay versus the parameter c with other parameters constant. The range of the parameter
where the largest Lyapunov exponent is close to the constant value ln 2, corresponds to the region
of the Smale –Williams attractor, where structurally stable hyperbolic chaos takes place. In the
right part of the graph, we can see both regimes corresponding to nonhyperbolic chaos with a
positive exponent, and with the dips in the graph corresponding to the periodicity windows.

Figure 8 shows a chart of regimes for the time-delay system in the parameter plane, where the
regions indicated by certain colors are identified using the Lyapunov exponents as described in
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Fig. 6. Two-dimensional projection of the Smale – Williams attractor for the Poincaré map of the time-delay
system (3.1) with the transverse structure of the filaments shown on the inset with magnification (a), and
the diagram of phases for the spike oscillations at successive bursts, illustrating the doubling of the angular
variable in each period of modulation (b). The system parameters are a0 = a1 = 1.5, b0 = b1 = 0.1, c0 = 0.2,
ε = 0.3, Ω = 0.05.

Fig. 7. Three largest Lyapunov exponents of the map (3.2) for the time-delay system with Ω = 0.05, τ =
20π, ε = 0.5, a0 = a1 = 1.5, b0 = b1 = 0.1.

the previous section. We can see areas corresponding to the attractor in the form of the Smale –
Williams solenoid SW , areas of periodic and quasi-periodic dynamics, respectively, P and Q, and
also domains of nonhyperbolic chaos, denoted by black color, where the largest Lyapunov exponent
is positive, while the sum of the first two exponents is negative. In addition, a green-colored region
of chaotic dynamics, where the sum of the first two exponents is positive, and the blue region of
hyperchaos characterized by two positive Lyapunov exponents are shown in the chart. (The last
two types of dynamics were absent in the chart for the finite-dimensional system of Fig. 4.) At
the top part of the chart we can see formations similar to those observed in the same region of
parameters for the finite-dimensional system, namely, the regions of quasi-periodic dynamics Q
and the periodic behavior P , and also the region of nonhyperbolic chaos with inclusions of areas
corresponding to the periodicity windows.

The shape and location of the SW regions, where the Smale –Williams hyperbolic chaotic
attractors are realized, look similar in both charts of Fig. 8 and Fig. 4. Differences are found
as we consider scenarios of exit from these areas under variation of the parameters.

When moving along the parameters plane of the time-delay system from the bottom to the
top, the destruction of hyperbolic chaos is accompanied, as can be concluded, by involvement of
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Fig. 8. Parameter plane chart for the system (3.1), where the regions indicated by a certain color and the
corresponding legends, are identified by analysis of the Lyapunov exponents. Other parameters are: Ω = 0.05,
a0 = a1 = 1.5, b0 = b1 = 0.1, τ = 20π.

additional directions in the phase space in the dynamics. This is evidenced by the presence of
a region where Λ1 + Λ2 > 0. The attractor, even being localized inside the absorbing domain of
toroidal form in the phase space, cannot be a classical Smale – Williams solenoid. Indeed, in this
case, in the transverse direction not compression, but expansion of elements of two-dimensional
tangent subspace takes place, and this makes it impossible to form a transverse Cantor-like structure
typical of the solenoids in the form of filaments. The dimension of the attractor estimated by the
Kaplan – Yorke formula (2.7) in this region is DKY > 2, while for the Smale –Williams solenoid it
should be in the interval 1 < DKY < 2.

In contrast to the finite-dimensional system, where the destruction of hyperbolicity is associated
with deformation of the graph of the iterative diagram, which consists of relatively distinct branches,
in this case the broadening of the branches is observed, transforming into some transversally
widened formations.

4. NUMERICAL TEST OF HYPERBOLICITY OF ATTRACTORS
FOR THE TIME-DELAY SYSTEM

The method for verifying hyperbolicity of attractors originally proposed in [33, 34] is that, for
a typical trajectory on an attractor, the variational equations for the perturbation vectors are
first solved in direct time to determine the unstable subspace, and then in the reverse time to
determine the stable subspace. Further, for a set of points on the trajectory, the angles between
these subspaces are calculated, and the character of the angular distribution is analyzed. If it is
separated from the region of zero angles, then it indicates the hyperbolic nature of the attractor,
whereas the appearance of the angles close to zero indicates that there is no hyperbolicity. For a
system of two alternately excited FitzNew–Nagumo oscillators, this method was applied in [13, 14]
and showed its effectiveness for recognizing the hyperbolic and nonhyperbolic chaos.

In the case of systems with time-delay, the problem is that the dimension of the phase space and,
accordingly, the dimension of the contracting subspace is infinite. This problem can be overcome
using a version of the method, where identification of the contracting subspace is based not on
using vectors belonging to it, but by means of vectors relating to its orthogonal complement, whose
dimension is usually small [35, 36]. These vectors are obtained from the adjoint set of linearized
equations, the method of constructing of which for systems with one or several delay times is
elaborated in [36, 37].

For our system
ẋ = c0x − 1

3
x3 − y,

ẏ = a(t)x − b(t)y + εẋ2(t − τ),
a(t) = a0 − a1 sinΩt, b(t) = b0 − b1 cosΩt,

(4.1)
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the variational equations near the reference phase trajectory have the form

˙̃x = c0x̃ − x2x̃ − ỹ,

˙̃y = a(t)x̃ − b(t)ỹ + 2εẋ(t − τ) ˙̃x(t − τ).
(4.2)

The adjoint system is derived in the manner described in [36, 37] as a system of equations with a
deviating argument of the advanced type

ξ̇ = −(c0 − x2)ξ − a(t)η − 2ε(c0 − x2)
(
c0x − 1

3
x3 − y

)
η(t + τ),

η̇ = ξ + b(t)η + 2 ε
(
c0x − 1

3
x3 − y

)
η(t + τ).

(4.3)

The equations are constructed so that, for the vectors given by Eqs. (4.2) and (4.3), the inner
product defined by the relation

x · ξ = x̃(t)ξ(t) + ỹ(t)η(t) − 2ε

t∫

t−τ

ẋ(θ) ˙̃x(θ)η(τ + θ)dθ (4.4)

remains constant in time in the course of dynamical evolution.
In the parameter region SW in Fig. 6 interesting for us, the unstable subspace of trajectories

belonging to the attractor is one-dimensional, and the same is true for the orthogonal complement
to the stable subspace. The procedure consists in the following: first, a long segment of the time
dependences x(t), y(t) corresponding to a reference trajectory of the system (4.1) is calculated with
simultaneous integration of the variation equations (4.2), which produce a solution that corresponds
to a perturbation vector with a positive Lyapunov exponent along the reference trajectory. Further,
in the reverse time along the same trajectory, the adjoint system is integrated. Although in its formal
notation (4.3) it is of advanced type, in the reverse time the solutions behave as for customary
retarding-time equations, so that there are no troubles associated with the mathematical nature of
the equations. At the end of the procedure, the angles are calculated through the inner product of
pairs of vectors related to identical points of the base trajectory at different moments of time, and
a histogram of their distribution is presented graphically.

Fig. 9. Histograms of the intersection angles of stable and unstable subspaces for a hyperbolic attractor at
ε = 0.5, c0 = 0.2 (a) and a nonhyperbolic attractor at ε = 0.4, c0 = 0.55 in the system (4.1). Other parameters
are: Ω = 0.05, τ = 20π, a0 = a1 = 1.5, b0 = b1 = 0.1.

Figure 9a shows a histogram of the intersection angles for the stable and unstable subspaces for
a trajectory on the attractor representing the Smale –Williams solenoid at c0 = 0.2, ε = 0.5, and
other parameters are indicated in the caption. The attractor has the Lyapunov exponents

Λ = {0.68, −1.47, −1.71, −1.90, −2.10, . . .},
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and its Kaplan – Yorke dimension is DKY = 1 + Λ1/|Λ2| ≈ 1.46. For comparison, Fig. 9b shows a
histogram for the attractor at c0 = 0.55, ε = 0.4, which is not hyperbolic. Its Lyapunov exponents
are

Λ = {0.56, −0.66, −0.95, −1.27, −1.51, . . .},

and the Kaplan –Yorke dimension is DKY = 1 + Λ1/|Λ2| ≈ 1.85.
The fact that the distribution in Fig. 9a is separated from zero, confirms the hyperbolic nature

of the attractor of the Poincaré map. Similar results are obtained with variation of the system
parameters in a rather wide range (SW region in Fig. 6), which corresponds to the inherent
roughness (structural stability) of the hyperbolic attractor.

5. CONCLUSION
In the present paper we demonstrate the occurrence of the rough hyperbolic chaos associated

with the Smale –Williams attractor in systems based on coupled neurons and delayed-feedback
neurons with alternating excitation and suppression of activity due to periodic modulation of
parameters. These results may be interesting both from the point of view of phenomenology in the
context of neurodynamics and within the framework of constructing technical systems, for example,
electronic noise generators, insensitive to variation of parameters, interferences and noise.

For a system of two alternately excited neurons, in the parameter plane a chart of regimes is
presented containing a wide region of hyperbolic chaos, and scenarios of its destruction at the exit
from this region are discussed.

A new model able to demonstrate hyperbolic chaos is introduced in the form of a single
FitzHugh –Nagumo neuron with parameter modulation supplemented with delayed feedback loop,
where the quadratic transformation of the transmitted signal is provided. Numerical results confirm
the hyperbolic nature of chaos in a wide range of parameters for the system with delay.

It can be assumed that interesting examples of complex dynamics, including structurally stable
chaos and hyperchaos, may be realized in many other systems composed as chains and networks
based on model neurons. An interesting question is a possible significance of these phenomena for
functioning of natural neural networks and for their technical analogs.

In any case, the results obtained make it possible to implement electronic generators of robust
chaos on the basis of systems of coupled elements in the form of the Bonhoeffer – van der Pol
oscillators equivalent in their dynamics to the model FitzHugh –Nagumo neurons. The structurally
stable systems for various plausible chaos applications (schemes of hidden communication [38, 39],
noise radar [40], cryptographic applications [41, 42], generation of random numbers [43, 44]) are
preferable because of insensitivity of characteristics of generated chaos to interferences, noises,
manufacturing imperfections, etc.
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