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Abstract—Pseudohyperbolic attractors are genuine strange chaotic attractors. They do not
contain stable periodic orbits and are robust in the sense that such orbits do not appear under
variations. The tangent space of these attractors is split into a direct sum of volume expanding
and contracting subspaces and these subspaces never have tangencies with each other. Any
contraction in the first subspace, if it occurs, is weaker than contractions in the second one.
In this paper we analyze the local structure of several chaotic attractors recently suggested
in the literature as pseudohyperbolic. The absence of tangencies and thus the presence of
the pseudohyperbolicity is verified using the method of angles that includes computation of
distributions of the angles between the corresponding tangent subspaces. Also, we analyze how
volume expansion in the first subspace and the contraction in the second one occurs locally.
For this purpose we introduce a family of instant Lyapunov exponents. Unlike the well-known
finite time ones, the instant Lyapunov exponents show expansion or contraction on infinitesimal
time intervals. Two types of instant Lyapunov exponents are defined. One is related to ordinary
finite-time Lyapunov exponents computed in the course of standard algorithm for Lyapunov
exponents. Their sums reveal instant volume expanding properties. The second type of instant
Lyapunov exponents shows how covariant Lyapunov vectors grow or decay on infinitesimal time.
Using both instant and finite-time Lyapunov exponents, we demonstrate that average expanding
and contracting properties specific to pseudohyperbolicity are typically violated on infinitesimal
time. Instantly volumes from the first subspace can sometimes be contacted, directions in the
second subspace can sometimes be expanded, and the instant contraction in the first subspace
can sometimes be stronger than the contraction in the second subspace.
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INTRODUCTION

Success in practical applications of chaotic theory essentially depends on the robustness of the
implemented systems. This means that the chaotic regime must not be destroyed or qualitatively
changed under small variations of parameters of the system [26]. Moreover, the chaotic regime has
to demonstrate good stochastic properties proven by rigorous mathematical analysis.
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One class satisfying these requirements contains systems with uniformly hyperbolic chaos.
Systems of this type, such as the Smale –Williams solenoid, manifest deterministic chaos justified
in a rigorous mathematical sense. They demonstrate strong and structurally stable stochastic
properties [12, 38, 39]. Though hyperbolic attractors were regarded for many years only as
a mathematical abstraction, many examples of physically realizable systems with a hyperbolic
attractor have recently been suggested [16, 17].

Uniformly hyperbolic attractors contain only saddle trajectories. For discrete-time systems these
trajectories have well-defined contracting and expanding manifolds. The former contains phase
trajectories approaching the attractor in direct time and the latter corresponds to the approaching
in reversed time. In the linear space of small perturbations tangent to these manifolds this situation
corresponds to the splitting of the whole space into a direct sum of two subspaces such that in one
of them all directions are expanding and in the second one they are contracting. The important
feature of the saddle trajectories and thus of the hyperbolic attractors is that the contracting and
expanding manifolds can intersect each other but can not have tangencies. In the associated tangent
space it is reflected in the absence of clashes between vectors from the expanding and contracting
subspaces so that the angles between these subspaces never vanish. For systems with continuous
time in addition to the expanding and contracting tangent subspaces the neutral tangent subspace
is added, and all these three subspaces never have tangencies with each other.

Besides the uniformly hyperbolic attractors one more class of systems with a “good” chaos is
formed by systems with pseudohyperbolic attractors (the Lorenz attractor, “wild” attractors) [7,
25, 27, 28]. These attractors are genuine strange attractors since each orbit has positive Lyapunov
exponent, i. e., stable periodic orbits are absent, and this property is robust being preserved under at
least small perturbations. The tangent space of pseudohyperbolic systems is split into a direct sum
of volume expanding and contracting subspaces. Notice that now only the expansion of volumes
is required instead of expansion along all direction needed for the uniform hyperbolicity. These
splitting must be invariant in time and the subspaces cannot have tangencies.

A necessary condition for the existence of the pseudohyperbolic attractor is the following relation
for its Lyapunov exponents [25, 27]:

n∑

i=1

λi > 0, and λi < 0 for i > n. (0.1)

Here n is the largest value for which this condition holds. To confirm the pseudohyperbolicity, one
also has to ensure that the n-dimensional volume expanding subspace and the (N − n)-dimensional
contracting subspace have no tangencies.

Based on discussions in [8, 25, 27, 28], the following list of properties of pseudohyperbolic
attractors can be formulated:

(i) The tangent space is split into a direct sum of two hyperbolically isolated subspaces such
that the angles between them never vanish.

(ii) The first n-dimensional subspace exponentially expands n-dimensional volumes, i. e., the sum
of the Lyapunov exponents corresponding to this subspace is positive.

(iii) The second subspace exponentially contracts all its vectors, i. e., all corresponding Lyapunov
exponents are negative.

(iv) Any contraction in the first subspace, if it occurs, is exponentially weaker than any
contraction in the second subspace.

In this paper we will test these properties for several concrete examples of chaotic systems. The
absence of the tangencies (property (i)) will be verified numerically using the implementation of
the method of angles as suggested in [13]. Three other properties are satisfied automatically if the
necessary condition (0.1) holds. However, unlike the angles that are computed at the trajectory
points with small step and thus describe the attractor locally, Lyapunov exponents provide global
characteristics and ignore its fine details due to averaging. In this paper we are going to test how
the properties (ii), (iii), and (iv) are satisfied locally, on infinitesimal and short time intervals.

REGULAR AND CHAOTIC DYNAMICS Vol. 23 Nos. 7–8 2018



910 KUPTSOV, KUZNETSOV

For this purpose, finite-time Lyapunov exponents will be computed based both on orthogonal
Gram–Schmidt vectors and on covariant Lyapunov vectors. Moreover, instant Lyapunov exponents
will be introduced which provide expansion or contraction rates on infinitesimal time.

The paper is organized as follows. In Section 1 we briefly review the methods of computation of
Lyapunov exponents, covariant and orthogonal Lyapunov vectors, finite-time Lyapunov exponents.
Also, instant Lyapunov exponents are defined. The main section (Section 2) is devoted to the testing
of pseudohyperbolicity of several attractors. Finally, in Section 3 the results are discussed.

1. SOME BASICS OF LYAPUNOV ANALYSIS

In this section we briefly review methods of Lyapunov analysis required for the further inves-
tigation of pseudohyperbolicity. We discuss the methods of computation of Lyapunov exponents,
finite-time exponents, covariant Lyapunov vectors (CLVs), and angles between tangent subspaces.
Moreover, we introduce a family of instant Lyapunov exponents that show the exponential growth
rates in tangent space on infinitesimal time.

1.1. Covariant Lyapunov Vectors and Angles Between Tangent Subspaces

Computation of angles between tangent subspaces can be done using CLVs. These vectors are
named “covariant” since the nth vector at time t1 is mapped by a tangent flow to the nth vector
at time t2, and a rate of its exponential expansion or contraction averaged over an infinitely long
trajectory is equal to the nth Lyapunov exponent λn. Two algorithms for computation of these
vectors were first reported in the pioneering works [10, 23]. See also the paper [15] for a more
detailed explanation and one more algorithm, and also the book [22] for a survey.

The importance of CLVs lies in the fact that they form a tangent basis for expanding and
contracting manifolds of trajectories of a dynamical system. In particular, these vectors can indicate
hyperbolicity of chaos. By definition, both uniform hyperbolicity and its weaker forms are related
to the transversality of the tangent subspaces [7, 12, 21, 38, 39]. A chaotic system is uniformly
hyperbolic when expanding, contracting, and also neutral, if any, subspaces are hyperbolically
isolated, i.e., never have tangencies. In terms of CLVs this means that the angles between the
subspaces spanned by the corresponding CLVs never vanish. In this paper we give attention to
the pseudohyperbolicity which requires the absence of tangencies between volume expanding and
contracting subspaces [8, 25, 27, 28].

Verification of the hyperbolic isolation of tangent subspaces will be done using the method of
angles [13], which in turn is based on the method for CLVs computation suggested in [15] as the
LU-method.

Consider a continuous-time system

Ẋ(t) = F
(
X(t), t

)
, (1.1)

where X ∈ R
N is the N -dimensional state vector, and F is a nonlinear function. Infinitely small or

tangent perturbations to trajectories of the system (1.1) obey the variational equation

ẋ(t) = J(t)x(t), (1.2)

where x ∈ R
N is a tangent vector and J(t) ∈ R

N×N is the Jacobian matrix, i. e., the matrix of
derivatives of F with respect to X. Its time dependence can be both implicit via X(t) and explicit
(for the nonautonomous case). For a discrete-time system we have

Xn+1 = F (Xn, n), (1.3)

xn+1 = Jnxn. (1.4)

Here all terms have the same meaning as above, and n denotes discrete time.
Both for continuous- and discrete-time systems the evolution of the tangent vectors from time

t1 to time t2 can be expressed as follows:

x(t2) = F(t1, t2)x(t1), (1.5)

whereF(t1, t2) is a linear operator called propagator. For discrete-time systems this is merely t2 − t1
times iterated Jacobian matrix of the system, and for continuous-time systems the propagator is
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built from a Jacobian matrix using the Magnus expansion [15]. In numerical simulations the action
of the propagator F(t1, t2) is equivalent to solving the variational equation (1.2) or (1.4) from t1
to t2 simultaneously with the basic system (1.1) or (1.3), respectively.

Computation routines for Lyapunov exponents and CLVs use inner products of tangent vectors.
Its particular form can be chosen arbitrarily, and Lyapunov exponents as well as CLVs do
not depend on this choice. However, in some cases, finding an appropriate form for the inner
product is important for clarifying the correspondence between mathematical models and numerical
approximations. For example, in [3, 14] a special form of the inner product is introduced for analysis
of hyperbolicity of chaos in time-delay systems. In our analysis, however, it is enough to consider
the simplest standard dot product.

Discussed algorithms for CLVs and angles are based on the standard algorithm for Lyapunov
exponents created independently and simultaneously by Benettin et al. [9] and by Shimada and
Nagashima [19]. Assume we need to compute K Lyapunov exponents, or CLVs, or going to evaluate
first K angles between the tangent subspaces. First, we initialize a set of K unit random tangent
vectors orthogonal to each other and gather them as columns of a matrix Qb(t1). Applying the

propagator F(t1, t2) to this matrix, we obtain a set of vectors Q̃b(t2), now nonorthogonal. We
recall that in practice this merely means that we solve variational equations from t1 to t2 K times

(for each column of Qb(t1)). Now we need to orthogonalize Q̃b(t2). There are many algorithms
to do it. The best known is called the Gram –Schmidt orthogonalization. In more general form
this procedure is referred to as QR factorization and consists in representation of the matrix as a
product of an orthogonal Q and an upper triangular R matrix [11, 20]. Thus, one iteration of the
standard algorithm includes the following operations:

F(t1, t2)Qb(t1) = Q̃b(t2), (1.6)

Q̃b(t2) = Qb(t2)Rb(t1, t2). (1.7)

The orthogonal matrix Qb(t2) is used for the next stage of the algorithm.

After skipping some transient, we can consider logarithms of diagonal elements of Rb(t1, t2).
Dividing them by the corresponding time step, τ = t2 − t1, we obtain finite-time Lyapunov
exponents (FTLEs) associated with the time interval τ , and averaging them over a long trajectory
we obtain numerical approximations for global Lyapunov exponents λi. In what follows, λi will be
referred to as merely Lyapunov exponents.

The algorithm for CLVs and angles that we use here requires the matrix Qb(t). After the
transient, the columns of this orthogonal matrix turns to the backward Lyapunov vectors. This
name seems to be counterintuitive, but its origin is not related to the direction of iterations in
time. It indicates that they have arrived at the current point after a long evolution initialized
in the far past [15, 18]. Also, these vectors are known as Gram– Schmidt vectors. The directions
pointed by these vectors, except for the first one, depend on the choice of the inner product. This
means that individually they do not give much information about the tangent space structure. But
the subspaces they span do. Assume that we have already found CLVs and they are gathered as
columns of the matrix Γ(t). The backward Lyapunov vectors form an orthogonal matrix in the
QR-decomposition of Γ(t) [15]:

Γ(t) = Qb(t)Ab(t), (1.8)

where Ab(t) is an upper triangular matrix. Since QR-decomposition preserves subspaces spanned
by vector-columns of the decomposed matrix (see, for example, the book [11] for details), Eq. (1.8)
shows that the first CLV coincides with the first backward Lyapunov vector, the second one lies in
a plane spanned by the first two backward vectors, the third one belongs to a three-dimensional
space of the first three backward vectors and so on.

The second part of the algorithm under discussion includes iterations with the adjoint
propagator. Notice that the action of the adjoint propagator as well as the action of the inverted
one corresponds to steps backward in time [15]. The form of the adjoint propagator depends on
the chosen inner product [3, 14], and the standard dot product produces its simplest version: the

adjoint propagator is obtained from the original one simply by transposition asFT(t1, t2). The steps
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are performed again with K vectors that are QR-decomposed after each action of the propagator
FT(t1, t2):

F(t1, t2)
TQf(t2) = Q̃f(t1), (1.9)

Q̃f(t1) = Qf(t1)Rf(t1, t2). (1.10)

Here Qf(t) is an orthogonal matrix with K columns. When one drops out some transient, columns
of Qf(t) become the so-called forward Lyapunov vectors. Here “forward” indicates that the vectors
arrive from a far future.

Assume for a moment that we have the full set of N forward vectors. Then the matrix Qf(t) is
an orthogonal matrix in the QL-decomposition of the CLVs matrix Γ(t):

Γ(t) = Qf(t)Af(t). (1.11)

Here Af(t) is a lower triangular matrix [15]. Thus, the Nth forward vector coincides with the last
CLV, the last two forward vectors span the subspace containing the (N − 1)th CLV, and so on.
This means that the remaining forward vectors, i. e., the columns of Qf(t) from the 1st to the nth,
form an orthogonal complement for the subspace containing the last N − n CLVs. Thus, given K
backward Lyapunov vectors in Qb(t) and K forward Lyapunov vectors in Qf(t), we have a subspace
with the first K CLVs and an orthogonal complement for the subspace for N −K remaining CLVs.
It is enough to compute K CLVs and a series of angles between the subspaces spanned by these
vectors.

Equating the left-hand sides of Eqs. (1.8) and (1.11), we obtain

P(t) = [Qf(t)]
TQb(t), (1.12)

P(t)Ab(t) = Af(t). (1.13)

Thus, given Qb(t) and Qf(t), we first compute P(t) with Eq. (1.12). Then, since Ab(t) and Af(t)
are upper and lower triangular matrices, respectively, they are computed for P(t) from Eq. (1.13)
as its LU decomposition, see [15] for more details. Finally, using Ab(t) and Qb(t) we can find CLVs
from Eq. (1.8).

The angles between subspaces are called principal angles. The cosines of these angles can be
found as singular values of a matrix whose elements are pairwise inner products of orthogonal basis
vectors for these subspaces [11]. We have an orthogonal basis for the first subspace of interest in
Qb(t), also, there is a basis for the orthogonal complement of the second subspace in Qf(t), and
P(t) is the matrix of their inner products. Two n-dimensional subspaces have n principal angles.
But since we are interested in verification of tangencies of these subspaces, we need only one of
the angles. Because Qf(t) is the orthogonal complement to the subspace of interest, the tangency
is signaled by the largest principal angle that corresponds to the smallest singular value. Once the
matrix P is computed, we can evaluate a series of K angles. Taking top left square submatrices
P[1 : n, 1: n], where n = 1, 2, . . . ,K, and finding their smallest singular values σn, we obtain the
angle between the n-dimensional subspace of the first CLVs and the (N − n)-dimensional subspace
of the remaining CLVs as:

θn = π/2− arccos σn. (1.14)

The smallest singular value σn, as well as the angle θn, vanishes when a tangency between the
corresponding subspaces occurs. Because trajectories with the exact tangencies are rather untypical,
in actual computations we register a tangency between subspaces if the corresponding angle can
be arbitrarily small.

1.2. Finite-time Lyapunov Exponents

Finite-time Lyapunov exponents (FTLEs) characterize expansions and contractions in phase
space on finite-time intervals. They are obtained from logarithms of diagonal elements of the upper
triangular matrix Rb(t1, t2) computed after each QR decomposition in the course of computation
of Lyapunov exponents, see Eq. (1.7):

Λ̄n(t1, t2) =
log rnn(t1, t2)

t2 − t1
. (1.15)
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The Lyapunov exponents λn are the averagings of FTLEs Λ̄n(t1, t2) over an infinitely long trajectory.
They always appear in a descending order in computations and show a hierarchy of expansions and
contractions in phase space.

The individual meaning of FTLEs (1.15), except for the first one, is not so clear. The first FTLE
shows how a typical tangent vector exponentially grows from t1 to t2. By construction, the second
FTLE is the rate of exponential growth along a direction perpendicular to the fastest one. It does not
have much physical meaning in itself. However, the sum Λ̄1(t1, t2) + Λ̄2(t1, t2) shows the exponential
grows rate of a typical two-dimensional area. Similarly, the third FTLE Λ̄3(t1, t2) admits a clear
interpretation summed with two previous ones: this sum indicates the rate of exponential growth
of a typical three-dimensional volume. The sum of the first n FTLEs is a growth rate for a typical
n-dimensional volume in the tangent space.

When CLVs became available due to the effective algorithms for their computations [10, 23], in
addition to FTLEs (1.15), a new sort of finite-time Lyapunov exponents were introduced, computed
as rates of exponential grows of CLVs on the time interval t2 − t1, see [15]. We will refer to them
as FTCLE and denote as L̄n(t1, t2). Similar to FTLEs (1.15), these CLV based exponents also
converge to Lyapunov exponents on large times, but their meaning is different. Each FTCLE
characterizes an exponential expansion or contraction rate along a covariant direction where on
average the expansion or contraction occurs according to the respective Lyapunov exponent. Since
this covariant directions pointed by CLVs are not orthogonal, the sums of FTCLEs are not related
to the rates of volume expansion or contraction.

In brief, FTLEs are based on backward Lyapunov vectors and are appropriate for testing volume
expanding properties in tangent space. For this purpose they have to be summed, while individual
values of FTLEs except the first one have no much sense. FTCLEs are based on covariant Lyapunov
vectors and are good for testing the expansion or contraction of tangent vectors. Their sums have
no sense and one has to consider their values individually.

The specific feature of both FTLEs and FTCLEs is that they are computed for finite-time
intervals. One of the appropriate ways of employing them is analysis of their fluctuations on
asymptotically large time intervals [1]. However, when local properties are required, it is usually
unclear which interval t2 − t1 is sufficiently small to give a representative picture. Obviously this
problem makes sense only for continuous-time systems, while for discrete-time systems the local
properties are recovered by FTLEs and FTCLEs computed for unit time steps t2 − t1 = 1.

1.3. Instant Lyapunov Exponents

To analyze tangent space expansion on infinitesimal time, we will introduce here the instant
Lyapunov exponents. Let us start with the instant Lyapunov exponents based on backward
Lyapunov vectors, which will be called IBLE and denoted by Λi(t). They have to be related to
FTLEs Λ̄i(t1, t2) as follows:

Λ̄i(t1, t2) =
1

t2 − t1

∫ t2

t1

Λi(t) dt. (1.16)

On the other hand, by definition, the sum of n first FTLEs is an exponential growth rate of
n-dimensional volume:

n∑

i=1

Λ̄i(t1, t2) =
1

t2 − t1
log

Voln(t2)

Voln(t1)
. (1.17)

Substituting here Eq. (1.16) and differentiating by t2, we obtain
n∑

i=1

Λi(t2) =
d

dt2
log Voln(t2). (1.18)

Here we have taken into account that Voln(t1) does not depend on t2. Volume Voln(t2) is equal
to the product of n first diagonal elements rii of the upper triangular matrix obtained after QR
decomposition, see Eq. (1.7). A detailed explanation of it can be found in [15]. Hence

n∑

i=1

Λi(t2) =
d

dt2

n∑

i=1

log rii, (1.19)
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Λi(t) = ṙii/rii. (1.20)

To proceed, consider a variational equation in the matrix form:

V̇ = JV, (1.21)

where V is a matrix of tangent vectors. Substituting V with its QR-decomposition we obtain:

Q̇R+QṘ = JQR, (1.22)

or, after simple matrix algebra:

ṘR−1 = QTJQ−QTQ̇. (1.23)

For any orthogonal time-dependent matrix Q the product QTQ̇ is always skew-symmetric. It can
be easily checked by differentiation of the identity QTQ = 1. This means that the diagonal of

QTQ̇ contains only zeros. Thus, substituting diagonal elements of the matrices from Eq. (1.23)
into Eq. (1.20), we obtain

Λi(t) = qTi (t)J(t)qi(t), (1.24)

where qi is the ith backward Lyapunov vector. Thus, to compute IBLE Λi(t) in the course of usual
routine for the Lyapunov exponent after steps (1.6), (1.7), we need to multiply each backward
vector by the Jacobian matrix and then to find the inner product with the vector itself.

Divergence of the vector field produced by the continuous-time system (1.1) is known to be equal
to the instant exponential volume contraction rate in the whole N -dimensional phase space [12].
It means that the sum of N IBLEs has to be equal to this divergence. This is indeed the case. By
definition, the divergence is equal to the sum of diagonal elements of the Jacobian matrix. Thus,

N∑

i=1

Λi =
∑

ijk

qijjikqkj =
∑

ik

jik
∑

j

qijqkj

=
∑

ik

jikδik =
∑

i

jii = divF,

(1.25)

where qij and jik are elements of matrices Qb and J, respectively, and δik is Kronecker’s symbol.
Notice that these calculations use merely the orthogonality of Qb, and do not employ its specific
form. This means that this equality is rather trivial and cannot be used, for example, for testing
correctness of computations of IBLEs. Also notice that a similar equality for the corresponding
FTLEs can be fulfilled only approximately, since divF is an instant value and FTLEs are always
related to a finite-time interval.

Let us now turn to the finite-time exponents based on CLVs. We will call them ICLE, denote
by Li(t), and introduce via the following integral:

L̄i(t1, t2) =
1

t2 − t1

∫ t2

t1

Li(t) dt, (1.26)

where L̄i(t1, t2) are FTCLE, i. e, the above-mentioned finite-time exponent based on CLVs. FTCLE

is equal to the exponential growth rate of the ith CLV γi(t) on the time interval (t2 − t1)
1):

L̄i(t1, t2) =
1

t2 − t1
log

(
‖γi(t2)‖
‖γi(t1)‖

)
. (1.27)

Combining Eqs. (1.26) and (1.27) and differentiating by t2, we obtain

L(t2) =
d

dt2
log ‖γ(t2)‖. (1.28)

1)Notice that using this equation for straightforward computation of FTCLE, i. e., solving the numerically
variational equation with γi(t1) as an initial condition, one has to take a sufficiently short interval t2 − t1.
Though formally CLVs are preserved in the course of running along a trajectory, they are fragile in the sense
that any error grows. Thus the numerical approximations of CLVs slowly diverge from their true directions and
tend to align along the first CLV.
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Here we have taken into account that ‖γ(t1)‖ does not depend on t2. Now we proceed as follows:

L(t2) =
1

2

d

dt2
log ‖γ(t2)‖2 =

1

2‖γ(t2)‖2
d

dt2
γ(t2)

Tγ(t2)

=
1

2‖γ(t2)‖2
[

˙γ(t2)
T
γ(t2) + γ(t2)

T ˙γ(t2)
]
.

(1.29)

By definition, CLVs evolve according to the variational equation (1.2). Thus,

L(t2) =
1

2‖γ(t2)‖2
{
γ(t2)

T[J(t2)
T + J(t2)]γ(t2)

}
. (1.30)

Taking into account that CLVs are always computed with unit norms, we obtain the final equation
for ICLE:

L(t) = 1

2

{
γ(t)T[J(t)T + J(t)]γ(t)

}
. (1.31)

Altogether, we deal with characteristic exponents of four types. Summed FTLEs Λ̄i and IBLEs
Λi indicate the volume expansion occurring on finite-time intervals and instantly, respectively.
FTLEs are related to IBLEs via Eq. (1.16). FTCLEs L̄i and ICLEs Li show expansion along
covariant directions on finite-time intervals and instantly, respectively. These are related to each
other according to Eq. (1.26). In what follows, we will use all of them to analyze the structure of
chaotic attractors.

It should be noted that, due to sensitivity to the local structure of phase space, finite-time
and instant Lyapunov exponents are not invariant under variable changes in the system under
consideration. However, they have topologically invariant statistical properties, for example, their
first moments, i. e., the global Lyapunov exponents.

2. VERIFICATION OF PSEUDOHYPERBOLICITY

2.1. Lorenz System

We start with the famous Lorenz system [29–31]:

ẋ = σ(y − x),

ẏ = x(r − z)− y,

ż = xy − bz.

(2.1)

The parameters are r = 28, σ = 10, b = 8/3. To solve numerically these and other equations, we
use the Runge –Kutta method of the fourth order.

First of all, we need Lyapunov exponents. For this purpose we will solve Eq. (2.1) simultaneously
with its variational equations with time step Δt = 10−4. Iterations (1.6), (1.7) are repeated until
the maximal absolute error of λi becomes less than ε = 10−5. These computations are repeated
ten times, and the resulting exponents are averaged. The results are λ1 = 0.906, λ2 ≈ 10−5, and
λ3 = −14.573. The second exponent must actually be put to zero since it corresponds to the
symmetry of Eqs. (2.1) with respect to time shifts. The values agree well with the values reported
in the literature, see, for example, [6, 32, 33].

The Lorenz system is known to be pseudohyperbolic [7, 25, 28, 34]. Our purpose here is to
confirm this by testing the absence of tangencies between the volume expanding and contracting
subspaces according to the property (i) formulated in the Introduction. Also, we will test how the
properties (ii), (iii), and (iv) are satisfied locally.

Since λ1 + λ2 > 0 and λ3 < 0, the tangent space of the Lorenz system (2.1) is expected to
be split into two-dimensional volume expanding and one-dimensional contracting subspaces. The
transversality of these two subspaces (property (i)) is confirmed by Fig. 1, where distributions of
angles between tangent subspaces are shown. This and all subsequent figures have been plotted
using Matplotlib graphics package [37]. Angle θ1 is computed between the subspace related to the
first covariant vector and the subspace spanned on two last ones; and θ2 is computed between the
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Fig. 1. Distributions of angles between tangent subspaces for the Lorenz system (2.1). Each curve is computed
three times with different numerical steps Δt = 0.01, 0.001 and 0.0001. The curves coincide almost perfectly,
indicating that they are not affected by time step. The pseudohyperbolicity is confirmed by the nonvanishing θ2.

subspace of the first two covariant vectors and the last one. To check that the curves are not affected
by the numerical step size, we have computed the angles three times, with steps Δt = 0.01, 0.001
and 0.0001. (For the first curve the orthogonalization and computation of the angles is done at each
step, for the second one after each 10 steps and for the last one after each 100 steps.) As a result, all
three curves coincide almost perfectly, so that they are barely distinguishable in the figure. One can
see from the figure that the subspace of the two first vectors never has common elements with the
subspace of the last one, since θ2 never vanishes. In other words, these subspaces are hyperbolically
isolated. This is the main manifestation of the pseudohyperbolicity. (Notice that the uniform
hyperbolicity requires the separation of the expanding, neutral and contracting subspaces, i.e, those
spanned by covariant vectors associated with positive, zero and negative Lyapunov exponents. In
particular, in Fig. 1 the angle θ1 would also be nonzero.)

Figure 2 shows the phase portrait of the Lorenz system where the attractor points are colored
according to the values of θ2: lighter colors represent larger angles and darker colors correspond to
smaller ones. One can see that the large angles can be found in inner areas of the attractor, while
the smallest values (but nevertheless nonzero as indicates Fig. 1) are located on its edges.

Let us now consider property (ii) concerning the volume expansion. As discussed, the volume
expansion properties can be tested using Lyapunov exponents corresponding to backward Lyapunov
vectors. Instant and finite-time expansion of n-dimensional volumes are characterized by n summed
IBLEs Λi and FTLEs Λ̄i, respectively:

Sn(t) =
n∑

i=1

Λi(t), S̄n(t, t+ τ) =
n∑

i=1

Λ̄i(t, t+ τ). (2.2)

We recall that τ denotes here the averaging time.

Figure 3a shows the distributions of Sn(t) and S̄n(t, t+Δt), where Δt is a numerical discretiza-
tion time step. The curves have been computed with Δt = 0.01 and 0.001, so that four curves
are plotted at each n. According to Eq. (1.16), Λ̄i(t, t+Δt) ≈ Λi(t) if the averaging time Δt is so
small that Λi(t) varies slowly on the integration interval. Thus, the coincidence of the distributions
for Sn(t) and S̄n(t, t+Δt) indicates that the instant exponents Λi(t), though computed for a
discrete subset of trajectory points, catch nevertheless all its essential features. On the other hand,
Λ̄i(t, t+Δt), being averaged over time step, nevertheless does not ignore essential fine details.
Moreover, the coincidence of the distributions for different discretization steps Δt indicates that
these results are not affected by numerical approximation errors. Altogether, the coincidence of the
four distributions for each n guarantees that they are representative, i. e., adequately reveal instant
volume expanding properties of the attractor.

The curve S2 in Fig. 3 is responsible for the tested property (ii). One can see in Fig. 3a that S2

can be both positive and negative. This means that the first subspace expanding on average due
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Fig. 2. Phase portrait of the Lorenz system (2.1). Point colors correspond to values of the angle θ2 between
the first two-dimensional tangent subspace and the second one-dimensional one. Observe that the small angles
are located on attractor edges.

to λ1 + λ2 > 0 on infinitesimal time can be both volume expanding and contracting. Figures 3b
and 3(c) show the distributions of sums of FTLEs S̄n computed for finite times τ = 1 and 10,
respectively. Practically we average every hundred and every thousand of FTLEs, respectively,
computed with the time step Δt = 0.01. One can see that only in panel (c) the distribution of S̄2

becomes strictly positive. Thus, the first subspace becomes expanding only on a sufficiently large
time scale. Figure 4a illustrates it in more detail. It shows the behavior of the lower boundary of
the distribution of S̄2 vs. the averaging time τ . Property (ii) is satisfied when min S̄2 > 0 at roughly
τ > 7.

In Fig. 3 the distribution of S3, the sum of all exponents showing the volume contraction in
the whole tangent space, forms the δ peak. This contraction exponent is known to be equal to the
divergence of the vector field generated by Eq. (2.1) and is equal to −(σ+ b+ 1), i. e., it is constant
for each trajectory. For the particular values of parameters, the divergence is −41/3 ≈ −13.67.
Analysis of the data used for plotting Fig. 3 shows that S3 as expected is always constant and
equal to this value, so that its distribution always forms the δ peak.

The verification of the property (iii) that the second subspace is contracting can be done with
the help of ICLE Ln(t). Similar to Fig. 3a, in Fig. 5 we plot the distributions of Ln(t) computed
with numerical steps Δt = 0.01 and 0.001 and also the distributions of the corresponding FTCLEs
L̄n(t, t+Δt). The coincidence of the four curves for each exponent index n guarantees that the
distributions are representative. The contraction in the second subspace is given by L3(t). Observe
that it is always negative, so that property (iii) is satisfied already on infinitesimal time. Figure 4b
illustrates that this property is satisfied on finite times. One can see that the upper boundary of
the distribution max L̄3 goes lower to the negative area as the averaging time τ grows.

To test if any contraction in the first subspace is exponentially weaker than the contraction in
the second one (property (iv)), we consider the distribution of distances between ICLEs Dn and
FTCLEs D̄n:

Dn(t) = min
{
Li(t), 1 � i � n

}

−max
{
Li(t), n + 1 � i � N

}
,

D̄n(t, t+ τ) = min
{
L̄i(t, t+ τ), 1 � i � n

}

−max
{
L̄i(t, t+ τ), n + 1 � i � N

}
.

(2.3)

REGULAR AND CHAOTIC DYNAMICS Vol. 23 Nos. 7–8 2018



918 KUPTSOV, KUZNETSOV

Fig. 3. Distributions of summed IBLEs and FTLEs, see Eq. (2.2), for the Lorenz system (2.1): (a) distributions
of Sn and S̄n computed with numerical step sizes Δt = 0.01 and 0.001 (for S̄n these Δt are also used as
averaging times); (b, c) distributions of S̄n computed with the numerical time step Δt = 0.01 and with the
averaging times τ = 1 and 10, respectively. Observe that the S̄2 becomes strictly positive only in panel (c).

Fig. 4. Boundaries of distributions vs. averaging time τ for the Lorenz system (2.1): (a) the lower boundary
of the distribution of S̄2(t, t+ τ ), (b) the upper boundary of L̄3(t, t+ τ ), and (c) the lower boundary of
the distribution of distances the between FTCLEs D̄2(t, t+ τ ). The dashed horizontal line shows zero level.
Observe that min S̄2 becomes positive only on a sufficiently large time scale.
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Fig. 5. Distributions of ICLEs Li(t) and the corresponding finite-time exponents FTCLEs L̄i(t, t+Δt) for
the Lorenz system (2.1) computed with numerical steps Δt = 0.01 and 0.001. The distribution for L3 is fully
located on the negative semiaxis, so that the second subspace is contracting already on infinitesimal times.

Fig. 6. Distributions of distances between ICLEs Dn, Eq. (2.3), computed with time step Δt = 0.01 for the
Lorenz system (2.1). Observe that the distribution for D2 falls onto the positive semiaxis.

This characteristic value is similar to the so-called fraction of the DOS violation criterion, which
implies a pairwise comparison of FTCLEs and counting situations where L̄i < L̄j, with j > i. Here
the abbreviation DOS stands for dominated Oseledec splitting. This characteristic value is used
in [2, 4, 5] to verify the hyperbolic isolation of tangent modes in spatially distributed systems.

The splitting between the first and the second subspaces is characterized by D2, the difference
between the smallest ICLE in the first subspace min

{
L1(t),L2(t)

}
, and ICLE from the second

subspace L3(t). One can see in Fig. 6 that, in agreement with property (iv), D2 is always positive,
so that any instant contraction in the first subspace is always weaker than instant contractions
in the second subspace. Figure 4c shows that this property is satisfied on finite-time scales. One
can see that the smallest distance min D̄2 between the finite-time exponents FTCLEs goes to the
positive area as averaging time τ grows.

Fluctuations around zero of D1 in Fig. 6 indicate that inside the first subspace the first exponent
L1(t) can often be smaller than the second one L2(t). These strong fluctuations result in the high
entanglement of the corresponding covariant vectors and vanishings of the angle θ1 in Fig. 1.

Altogether, for pseudohyperbolic Lorenz attractor we observe that the tangent space is split into
two subspaces, two and one-dimensional, respectively. These subspaces are hyperbolically isolated
from each other (property (i)). The second subspace is strictly contracting (property (iii)) even on
infinitesimal times. If some contraction occurs in the first subspace, it is weaker than the contraction
in the second subspace (property (iv)), and this property is also satisfied already on infinitesimal
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Fig. 7. Distributions of angles between tangent subspaces for the Rössler system (2.4). Each curve is computed
three times with different numerical steps Δt = 0.01, 0.001 and 0.0001. Both angles often vanish, so that there
are no hyperbolically isolated tangent subspaces.

time. But as for property (ii), that the first subspace always expands volumes, it is satisfied only
when the volume expansion is considered on sufficiently large time scales.

2.2. Rössler System

As a counter example where the pseudohyperbolicity is absent, we consider the well-known
Rössler system [31, 33, 35]

ẋ = −y − z,

ẏ = x+ ay,

ż = b+ z(x− c),

(2.4)

with parameters a = 0.2, b = 0.2, c = 5.7.
Lyapunov exponents computed with time step Δt = 0.0001 until the maximal absolute error

10−5 is reached and averaged over ten trajectories are λ1 = 0.072, λ2 ≈ 1× 10−6, and λ3 = −5.394.
The second one must be put to zero as being responsible for perturbation along the trajectory.

Though the necessary condition for pseudohyperbolicity λ1 + λ2 > 0 is fulfilled, this is not a
pseudohyperbolic attractor since the first two-dimensional tangent subspace is not hyperbolically
isolated from the second one-dimensional subspace: as Fig. 7 shows, the distribution for the
corresponding angle θ2 is not separated from zero. The angle θ1 can also vanish, so that all tangent
subspaces of the Rössler system are highly entangled and no splitting into hyperbolically isolated
subspaces exists.

Figure 8 shows the phase portrait of the Rössler system colored according to values of the
angle θ2. One can see that the tangencies indicated by zeros of θ2 (dark areas) occupy half the
circle-like horizontal band lying parallel to the xy-plane, and also θ2 vanishes along loops going up
along the z-axis.

We have also tested related properties of the Rössler system (2.4). Figure 9 shows the
distributions of summed IBLEs Sn(t) and FTLEs S̄n(t, t+Δt) indicating the volume expansion
(property (ii)). As above for the Lorenz system, for each n the distributions are computed with
numerical steps Δt = 0.01 and 0.001. The corresponding curves are barely distinguishable, thus
confirming that they are appropriate for representation of instant expansion and contraction
properties. We can see that the curves for each n have tails both in positive and negative semiaxes.
They are very low for S1 and S2, while S3, which is responsible for the contraction in the whole
tangent space, oscillates hard. Consequently, none of the tangent subspaces is strongly contracting
or expanding on infinitesimal times.

Figure 10a shows the behavior of the lower boundary of the distribution of S̄2, indicating the
fulfillment of property (ii). One can see that min S̄2 is negative and the property concerning the
volume expansion remains violated even on sufficiently large time scales.
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Fig. 8. Phase portrait of the Rössler system (2.4). Points are colored according to the values of θ2. Observe
a large number of points with vanishing angles.

Fig. 9. Distributions of summed IBLEs and FTLEs for the Rössler system (2.4). For each n the distributions of
Sn and S̄n are computed with numerical step sizes Δt = 0.01 and 0.001. Observe that for all n the distributions
have both positive and negative tails.

Figure 11 shows the distributions of ICLEs Ln(t) and the related finite-time exponents FTCLEs
L̄n(t, t+Δt) to verify the contraction in the second subspace, property (iii). Again we observe
that the exponents fluctuate around zero, so that any covariant direction in the tangent space
on infinitesimal time can be either expanding or contracting. Nevertheless, Figure 10b shows that
max L̄3 becomes negative at approximately τ > 5, so that property (iii) is satisfied.

The distributions of distances between ICLEs (2.3) are shown in Fig. 12. The positive and
negative tails of D1 and D2 indicate that on infinitesimal times the exponents are highly entangled
and their order is not preserved. But as follows from Fig. 10c, minD2 becomes positive at finite
time τ > 5, so that the contraction in the second subspace becomes strictly stronger than in the
first one, and property (iv) is satisfied.

So, the non-pseudohyperbolic nature of the Rössler system (2.4) is confirmed due to vanishings
of angles between tangent subspaces. The strict volume expansion within the first subspace is not
observed even at sufficiently large time scales. The second subspace is not strictly contracting on
infinitesimal time but acquires this property on finite-time scales. The same is the case for the
second subspace, which turns out to be strictly contracting on finite-time scales.
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Fig. 10. As in Fig. 4 for the Rössler system (2.4).

Fig. 11. Distributions of ICLEs Li(t) and FTCLEs L̄i(t, t+Δt) for the Rössler system (2.4). For each index
n the distributions are computed using numerical steps Δt = 0.01 and 0.001. Observe the location of all
distributions both on positive and negative semiaxes.

Fig. 12. Distributions of distances between ICLEs for the Rössler system (2.4) solved numerically with step
size Δt = 0.01. Observe that both D1 and D2 can be both positive and negative.
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Fig. 13. Distributions of angles between tangent subspaces for the system (2.5). Each curve is computed three
times with different numerical steps Δt = 0.01, 0.001 and 0.0001. The pseudohyperbolicity is indicated by the
distribution of θ3 that is well detached from the origin.

2.3. Generalized Lorenz System

Now we will analyze a generalization of the Lorenz system proposed in [40], see problem
C.7.No.86, as a possible candidate for a system with a wild spiral attractor. Also, this system,
as well as other examples of spiral chaos, is considered in [24, 41, 42].

ẋ = σ(y − x),

ẏ = x(r − z)− y,

ż = xy − bz + μw,

ẇ = −bw − μz,

(2.5)

where parameters are r = 25, σ = 10, b = 8/3, and μ = 7.

Theoretical evaluations suggest that this system is pseudohyperbolic. Lyapunov exponents
computed similarly to the two previous systems are λ1 = 2.193, λ2 = 0, λ3 = −1.959, and λ4 =
−16.567. Since λ1 + λ2 + λ3 > 0 and λ4 < 0, the tangent space splitting responsible for the
pseudohyperbolicity, see property (i), is expected to occur between three-dimensional volume
expanding first subspace and one-dimensional contracting second subspace. Figure 13 shows the
distributions of angles between the tangent subspaces. The splitting of interest is characterized by
the angle θ3. Clear separation of its distribution from the origin confirms that the first and the
second subspaces are hyperbolically isolated, so that the system (2.5) is indeed pseudohyperbolic.
Notice also high frequency of vanishing of θ1 and θ2 indicating that within the first subspace the
trajectory manifolds spanned by the corresponding first three CLVs are highly entangled.

Figure 14 shows how values of θ3 are located on the attractor of the system (2.5). It represents
a three-dimensional projection of the attractor whose points are colored according to values of θ3.
Observe that both the projection itself and the distribution of angles on it is similar to the Lorenz
attractor: it contains two circular bands where small angles are located on outer edges, cf. Fig. 2.

Figure 15 provides verification of the volume expansion, property (ii), demonstrating the
distributions of summed exponents Sn and S̄n. As for the previous systems, each curve is computed
four times: for IBLEs and FTLEs with numerical steps Δt = 0.01 and 0.001. The almost perfect
coincidence of the different versions of the curves confirms that they are representative for
characterizing the properties of the attractor on infinitesimal times.

The volume expansion within the first subspaces is shown by the distribution for S3. One can
see that it hardly oscillates, being with almost equal probabilities both positive and negative. This
means that the property (ii) does not hold on infinitesimal time. To check when this property is
satisfied in Fig. 16, we have plotted the lower boundary of the distribution min S̄3 vs. averaging
time τ . One can see that min S̄3 > 0 at approximately τ > 7. This means that the first tangent
subspace of the system (2.5) becomes volume expanding at sufficiently large time scales.
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Fig. 14. Attractor for the system (2.5). Colors correspond to values of θ3. Observe similarity with the Lorenz
attractor in Fig. 2.

Fig. 15. Distributions of summed IBLE Sn and FTLEs S̄n for the system (2.5) computed with numerical
steps Δt = 0.01 and 0.001. Observe that S3 can have both positive and negative signs.

In Fig. 15 one can see that the distribution for S4, similarly to the Lorenz system, forms the δ
peak, cf. distribution for S3 in Fig. 3a. One can check that this is due to the constant divergence
divF = −(σ + 2b+ 1), which for the given parameter values is equal to −16.3.

Property (iii) concerning the strong contraction in the second subspace is tested in Fig. 17. Again
each distribution is represented with four curves: ICLEs and FTCLEs are computed with numerical
time steps Δt = 0.01 and 0.001. One can see that L4(t) responsible for contraction in the second
subspace, though rarely, can be positive. Therefore, on infinitesimal time the property (iii) does not
hold. As one can see in Fig. 16b, the upper boundary of the distribution max L̄4 becomes negative at
approximately τ > 1, and the second subspace becomes strongly contracting on finite-time scales.

According to property (iv), any contraction in the first subspace is weaker than contraction
in the second subspace. This is tested using distributions of distances between exponents Dn in
Fig. 18. The splitting between the first and the second tangent subspaces is characterized by D3.
One can see that D3 can rarely be negative. This means that sometimes instant contraction in
the first subspace is stronger than that in the second subspace, and property (iv) does not hold
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Fig. 16. As in Fig. 4 for the system (2.5).

Fig. 17. (a) Distributions of ICLEs and FTCLEs computed with time steps Δt = 0.01 and 0.001 for the
system (2.5). Observe that L4 can be both positive and negative.

on infinitesimal times. As follows from Fig. 16c, the lower boundary min D̄3 becomes positive at
approximately τ > 1, so that property (iv) is satisfied on finite-time scales.

Altogether, for the generalized Lorenz system (2.5), the pseudohyperbolicity is confirmed due
to the absence of tangencies between the first three-dimensional subspace and the second one-
dimensional subspace, property (i). But all other properties are satisfied only on finite-time scales,
and are violated on infinitesimal times. Volumes from the first subspace can instantly be contracting,
and vectors from the second one can sometimes be expanded. Moreover, the instant contraction in
the first subspace can sometimes be stronger than the contraction in the second subspace.

2.4. Three-Dimensional Generalizations of Hénon Map

A series of works have recently been reported where a pseudohyperbolicity of three-dimensional
generalizations of the Hénon map are discussed [8, 24, 28, 36]. In this paper we will test the
pseudohyperbolicity of the map

xn+1 = yn,

yn+1 = zn,

zn+1 = Bxn +Azn + Cyn − z2n,

(2.6)
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Fig. 18. Distributions of distances between ICLEs for the system (2.5). Numerical step size is Δt = 0.01.
Observe that D3 changes sign.

with following parameter sets

B = 0.7, A = −1.11, C = 0.77, (2.7)

B = 0.7, A = 0, C = 0.85, (2.8)

B = 0.7, A = 0, C = 0.815. (2.9)

Parameters (2.7) correspond to Eq. (17) and Fig. 5d in [8], and parameters (2.8) and (2.9) are
taken from [36], see Eq. (1) and Fig. 1 there.

As reported in [24], mathematicians from the University of Uppsala, Sweden, J. Figueros and
W. Tucker using the interval arithmetic methods have not confirmed the pseudohyperbolicity of
the system (2.6) with parameters (2.8) and confirmed it for the parameters (2.9).

Lyapunov exponents computed with maximal absolute error ε = 10−5 and averaged over ten
independent trajectories are the following: for (2.7) λ1 = 0.013, λ2 = 0, λ3 = −0.370; for (2.8)
λ1 = 0.020, λ2 = 0, λ3 = −0.377; and for (2.9) λ1 = 0.008, λ2 = 0, λ3 = −0.365. Notice that the
second Lyapunov exponent is always zero. As discussed in Ref. [43, 44], each zero exponent is related
with a continuous symmetry of a system. As one can check, the system (2.6) is invariant under the
transformation xn → ynC/B and yn → xnB/C. In tangent space this transformation gives rise to
a direction with marginal stability, which, in turn, results in zero Lyapunov exponent.

The presence of the pseudohyperbolicity is tested in Fig. 19, where the distributions of angles
between tangent subspaces are shown, property (i). Since for all cases λ1 + λ2 > 0 and λ3 < 0, the
first subspace is two-dimensional and the second is one-dimensional. This means that the angle θ2
indicates the presence or absence of the pseudohyperbolicity. As one can see in Fig. 19a and 19c,
the nonvanishing θ2 indicates that parameters (2.7) and (2.9) correspond to a pseudohyperbolic
attractor, i. e., property (i) is satisfied. On the contrary, in Fig. 19b the distribution for θ2 is not
separated from the origin, i. e., the first and the second subspaces are not hyperbolically isolated,
so that the case (2.8) is not pseudohyperbolic.

Phase portraits of the system (2.6) with parameters (2.7)–(2.9) are shown in Figs. 20–22,
respectively. Colors represent values of the angle θ2. Observe high similarity of the pseudohyperbolic
attractors in Figs. 20 and 22. Their small (but nonzero) angles θ2 are located on bands crossing in
the center of the attractor. On the non-pseudohyperbolic attractor in Fig. 21 small and zero angles
are located on edge areas.

The instant exponents IBLEs and ICLEs are not applicable to discrete-time systems like (2.6)
since the local expansions and contractions are explored by FTLEs and FTCLEs computed for one
step of time. Hence, we will consider only finite-time exponents. Moreover, the distributions of S̄n,
L̄n, and D̄n will be represented only for the parameters (2.7) since two other cases produce similar
pictures.

Figure 23 shows that for the case (2.7) property (ii) is locally violated and the first subspace
is not strictly volume expanding. The indication is that S̄2 oscillates, being often positive
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Fig. 19. Distributions of angles between tangent subspaces for the system (2.6). Panels (a), (b), and (c)
correspond to parameters (2.7)–(2.9). The nonvanishing θ2 confirms the pseudohyperbolicity in panels (a)
and (c), while the case represented in panel (b) is not pseudohyperbolic.

Fig. 20. Attractor of the system (2.6) with parameters (2.7). Colors represent values of θ2. Observe the
location of small angles in the middle area.

and negative. Analogously, S̄2 oscillates for the cases (2.8) and (2.9), so that property (ii) is
also not satisfied locally. As one can see in Fig. 24a, the lower boundary of the distribution
min S̄2 becomes positive only on sufficiently large time scales in all the three cases considered.
Observe almost identical behavior of min S̄2 for pseudohyperbolic attractors, see curves 1 and 3
corresponding to parameters (2.7) and (2.9), respectively. For the non-pseudohyperbolic attractor
with parameters (2.8) the first subspace also becomes strictly expanding, i. e., min S̄2 becomes
positive, but on a much higher time scale. As for the distribution for S̄3 in Fig. 23, δ peak indicates
that the contraction in the whole tangent space of the system (2.6) is constant.

Figure 25 demonstrates a local violation of property (iii) for the parameters (2.7): L̄3 responsible
for the contraction in the second subspace can sometimes be positive. Also, L̄3 demonstrates similar
behavior for parameter (2.8) and (2.9). Figure 24b shows that the second subspace for all three
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Fig. 21. Attractor of the system (2.6), (2.8). Observe vanishing angles on the edges.

Fig. 22. Attractor of the system (2.6), (2.9). Observe similarity with the attractor in Fig. 20.

parameter sets becomes contracting when averaging time τ grows. Again two pseudohyperbolic
cases (2.7), and (2.9), curves 1 and 3, respectively, behave almost identically, and the non-
pseudohyperbolic attractor with parameters (2.8), curve 2, becomes contracting much later than
the other two.

Finally, property (iv) is also satisfied only on average, i. e., contraction in the first subspace can
locally be stronger than contraction in the second one. One can see in Fig. 26 that indicating it
D̄2 appears both in positive and in negative semiaxes. Similarly, D̄2 behaves for the cases (2.8)

and (2.9). Only at approximately τ > 10 min D̄2 becomes positive for all three cases, see Fig. 24c.
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Fig. 23. Distributions of summed FTLEs S̄n(t, t+ 1) for the system (2.6) with parameters (2.7). Observe
that all three fluctuating values can change signs.

Fig. 24. As in Fig. 4 for the system (2.6) with parameters (2.7)–(2.9), respectively, curves 1, 2, and 3. Observe
almost perfect coincidence of the curves 1 and 3 corresponding to the pseudohyperbolic cases.

Fig. 25. Distributions of FTCLEs L̄n(t, t+ 1) for the system (2.6) with parameters (2.7). Observe that all
three FTCLE can be both positive and negative.
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Fig. 26. Distributions of distances between FTCLEs D̄n(t, t+ 1) for the system (2.6) with parameters (2.7).
Observe that two represented values oscillate around zero.

Again notice the coincidence of the curves 1 and 3, representing pseudohyperbolic cases (2.7)
and (2.9), respectively.

Altogether, the pseudohyperbolicity of the system (2.6) with parameters (2.7) and (2.9) is
confirmed by the fulfillment of property (i), i. e., by the nonvanishing angle between the first two-
dimensional subspace and the second one-dimensional one. In agreement with above-mentioned
results, the case (2.8) is not pseudohyperbolic. The three other properties (ii), (iii) and (iv) are
violated locally. They are satisfied only after averaging on a certain time scale.

3. CONCLUSION

We have tested the local structure of chaotic attractors related to pseudohyperbolicity. The
classical Lorenz system has been discussed as a well-known representative of pseudohyperbolic
systems, and the Rössler system has been compared with it as an example of a system not belonging
to this category. Moreover, several recently reported examples [8, 24, 36] of systems with and
without pseudohyperbolicity have been analyzed.

The main criterion of the pseudohyperbolicity is the splitting of the tangent space into two
hyperbolically isolated subspaces, volume expanding and contracting ones. This means that the
angles between these two subspaces are nonzero at every point of the attractor. We have computed
numerically the corresponding angle distributions and discussed the presence or absence of the
pseudohyperbolicity in the systems considered.

The properties of the two tangent subspaces of pseudohyperbolic systems are usually explored
via Lyapunov exponents λi. The first n-dimensional subspace of a pseudohyperbolic system has
to be volume expanding, so that

∑n
i=1 λi > 0, and the second subspace is contracting, i.e., λi < 0

for i > n. Moreover, as discussed in [8, 25, 27, 28], a contraction, if it occurs in the first subspace,
has to be weaker than any contraction in the second subspace. However, Lyapunov exponents
describe attractors globally and the local properties are not taken into account. Therefore, we
have analyzed local, i. e., related to infinitesimal and short time intervals, volume expanding and
contracting properties of the two tangent subspaces.

To analyze expansion in tangent space on infinitesimal time, we have introduced a family
of instant Lyapunov exponents. Unlike the well-known finite-time ones, the instant Lyapunov
exponents show expansion or contraction on infinitesimal time intervals. Two types of instant
Lyapunov exponents are defined. One is related to ordinary finite-time Lyapunov exponents
(FTLEs) computed in the course of standard algorithm for Lyapunov exponents. These instant
exponents are based on orthogonal Gram– Schmidt vectors, also known as backward Lyapunov
vectors, and we refer to them as IBLE. Their sums reveal volume expanding properties: the sum of
the first n IBLEs is the exponent of growth or contraction of an n-dimensional tangent volume on
infinitesimal time. The other type of instant Lyapunov exponents shows how covariant Lyapunov
vectors grow or decay on infinitesimal time and thus are called ICLE. They are appropriate for
analysis of instant single expanding or contraction direction in the tangent space.
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Using both instant and finite-time Lyapunov exponents, we have demonstrated that for the
Lorenz system the second subspace is contracting on infinitesimal times and any instant contraction
in the first subspaces is always weaker than the contraction in the second one. But the first subspace
is not strictly volume expanding when considered on infinitesimal times. This property is satisfied
only when the volumes evolution is observed on sufficiently large finite-time scales. For other tested
systems all expanding and contracting properties specific to the pseudohyperbolicity are observed
only on finite times. Instantly volumes from the first subspace can sometimes be contracting,
directions in the second subspace can sometimes be expanded, and the instant contraction in the
first subspace can sometimes be stronger than the contraction in the second subspace.
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