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We propose a new example of a system with a hyperbolic chaotic attractor. The system is composed of 
two coupled Froude pendulums placed on a common shaft rotating at constant angular velocity with 
braking by application of frictional force to one and other pendulum turn by turn periodically. A 
mathematical model is formulated and its numerical study is carried out. It is shown that attractor of the 
Poincaré stroboscopic map in a certain range of parameters is a Smale – Williams solenoid. The 
hyperbolicity of the attractor is confirmed by numerical calculations analyzing the angles of intersection 
of stable and unstable invariant subspaces of small perturbation vectors and verifying absence of 
tangencies between these subspaces. 

Hyperbolic theory is a section of the theory of dynamical systems that provides a rigorous 
mathematical justification for chaotic behavior of deterministic systems, both with discrete time 
(maps) and with continuous time (flows) [1-4]. The creation of this theory was, as said by 
D.V. Anosov, the content of the "hyperbolic revolution" of the 60s of the XX century [5]. 

If we talk about dissipative chaotic systems, the hyperbolic theory introduces a special type 
of attracting invariant sets, the uniformly hyperbolic attractors composed exclusively of saddle 
phase trajectories. For all points on such a trajectory in the space of small perturbations (tangent 
space), we can define a subspace of vectors exponentially decreasing in norm in direct time, and 
a subspace of vectors exponentially decreasing in the evolution in inverse time. An example is 
the Smale – Williams attractor, which arises in the state space of a system if a torus-form region 
undergoes in one discrete time step a two-fold longitudinal stretching, transverse compression 
and folding in a double loop located inside the initial torus. With each repetition of the 
transformation, the number of curls doubles and in the limit tends to infinity, resulting in a so-
called solenoid with a characteristic Cantor-like transverse structure. An obvious generalization 
is construction, where at one step the folded loop has a different number of turns – three or more. 
Chaotic nature of the dynamics is determined by the fact that the transformation of the angular 
coordinate in this setup corresponds to an expanding circle map, or the Bernoulli map, of the 
form )2(mod1 πθ=θ + nn M , where 2≥M . 

Uniformly hyperbolic attractors are characterized by roughness, or structural stability, by 
virtue of which the generated chaos retains its features under small variations of the system 
parameters; obviously, this property is desirable and preferable from the point of view of any 
plausible application of chaos [6]. A disappointment was that as years passed, it became clear 
that examples of chaotic systems of different nature, which were considered, do not fit into the 
narrow frame of the basic hyperbolic theory. In this situation, the hyperbolic dynamics began to 
be considered only as a refined abstract image of chaos rather than something relating directly to 
real systems. The deficit of physical examples was overcome in part only very recently [7,8], as 
instead of searching for "ready-to-use" objects with hyperbolic chaos in nature and technology, 
we turned to a purposeful design of such systems, applying tools of physics and theory of 
oscillations, as an alternative to the mathematical exercises based on topological, geometric, and 
algebraic constructions. 

Undoubtedly, from the point of view of clarity, among possible examples of hyperbolic 
chaos we should outline systems of mechanical nature as they are easily perceived and 
interpreted in a frame of our everyday experience [9]. In this article, we propose to consider a 
mechanical system based on two Froude pendulums placed on a common shaft rotating at a 
constant angular velocity been alternately braked by periodic application of frictional forces. As 



we shall show, with proper specification of the system parameters, the Smale-Williams solenoid 
occurs as an attractor of the Poincaré stroboscopic map. Apparently, this system can be 
implemented in experiment. 

In Section 1 we recall a model of the Froude pendulum, emphasizing the parameter 
dependence of the frequency of self-oscillations, which is essential for further considerations. In 
Section 2 we turn to constructing a system based on two pendulums, which can manifest a 
hyperbolic chaotic attractor. Equations of the mathematical model are formulated, and the 
operating principle of the system that determines presence of the Smale-Williams attractor in the 
map describing the state transformation is explained. Section 3 presents numerical results of 
simulating dynamics of the system; particularly, waveforms of oscillations and portraits of 
attractors are presented and discussed in various dynamical regimes, analysis of Lyapunov 
exponents is carried out, and diagrams illustrating transformation of the oscillation phases at 
successive stages of activity of the pendulums are depicted. We also present results of 
verification of the hyperbolicity of the attractor at appropriate selection of the system parameters 
by analyzing angles of intersection of stable and unstable invariant subspaces, confirming the 
absence of tangencies of these subspaces. 

1. Froude pendulum 
The Froude pendulum (Fig. 1a) is a good old example of mechanical self-oscillations [10-14]. 
Consider a weight of mass m on a rod of length l of negligible mass. The rod is attached to a 
sleeve placed on a shaft rotating at a constant angular velocity Ω. The equation of motion has the 
form 

 )(sin2 xMxmglxxml &&&& −Ω=+α+ . (1) 

Here x is an angle of the pendulum displacement from the vertical, α is a coefficient of viscous 
friction with the surrounding medium, l is the distance from the rotation axis to the center of 
mass, g is the gravity constant, )( xM &−Ω  is moment of the dry friction force between the shaft 
and the sleeve depending on the value of the relative angular velocity. The form of the 
dependence is assumed to look like shown in the figure in the separate panel being represented 
by a curve with decrease having an inflection point. 

As is often assumed in construction of the mathematical model, we suppose that the 
angular velocity of rotation of the shaft Ω is chosen corresponding to the inflection point, and 
write the expansion of the function in a Taylor series near this point: 
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Figure 1: Classic Froude pendulum (a) and system of two such pendulums equipped with a mechanism of 

alternating braking (b) 



Then the equation takes the form 
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When introducing the dimensionless quantities 
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we obtain 
 μ=+−−− xxxbdax sin)( 2 &&&& . (5) 

Now the dot denotes differentiation with respect to the dimensionless time t′ , and the prime will 
always be omitted in further notations. 

 
Figure 2: (a) Attracting limit cycles for various parameters corresponding to sustained periodic motions a 
single Froude pendulum: oscillatory A, B, C, D, respectively, at 36.0,24.0,12.0,03.0=− da , with 
frequencies 50.0,827.0,926.0,982.02 =πf , and rotational D+, E± , F± , at 60.0,48.0,36.0=− da , with 
frequencies )(044.1),(622.1),(201.1 −++ EED , )(66.1),(88.1 −+ FF . (b) The dependence of the 
frequency of the oscillator regimes on the value of da − . Other parameters are 087.0,16.0 =μ=b . On 
the panel (a) points are marked that are equilibrium states: unstable focus O and saddle S. On the panel 
(b) the arrow indicates the situation where the frequency of self-oscillations is half the frequency of small 
oscillations of the pendulum. 

If 0>− da , then self-oscillations arise in the system. On the phase plane (Fig. 2a) at each 
particular parameter value the self-oscillatory mode is represented by an attractive closed 
trajectory (limit cycle) around the equilibrium state O at )0,(arcsin),( μ=xx & . For small 
amplitude, a frequency of the self-oscillations is close to the natural frequency of the oscillator 

1)2( −π=f . With growth of da − , the limit cycle increases in size, and the frequency f 
decreases. This is due to the fact that at the maximum angle the pendulum approaches ever closer 
and closer to the unstable state corresponding to the position pointing upwards, the saddle point 
S, )0,arcsin(),( μ−π=xx & , where the motion along the phase trajectory slows down. Further 
growth of the parameter leads to a change of the oscillatory movements of the pendulum to 
periodic rotational motions, which correspond to the limit cycles closing as they go around the 
phase cylinder, and their frequencies are much higher. 

For our further consideration, it is essential to select parameters in such a way that the 
frequency of self-oscillations is exactly half the frequency of small oscillations. At μ=0.087 and 
b=0.16 this is the case if we set 360.0=− da . The oscillatory process that arises here contains 
an essential second harmonic of the fundamental frequency (this is due to the lack of symmetry 



of the equation with respect to the substitution xx −→ ). If the generated signal acts a linear 
oscillator of natural frequency 10 =ω , one can observe its resonant buildup under the effect of 
the second harmonic of the self-oscillating system. This is illustrated by Fig. 3, which is plotted 
basing on the results of numerical integration of the equations 
 xyyxxxbax &&&&&&& ε=+μ=+−− ,sin)( 2 . (6) 

 
Figure 3: Resonant buildup of a linear oscillator under the action of the second harmonic of the self-
oscillatory model of Froude pendulum as obtained from numerical integration of (6) with parameters 
a=0.36, b=0.16, μ=0.087, ε=0.06. 

2. System based on two coupled pendulums with alternating braking 
Let us consider two identical Froude pendulums placed on a common shaft and weakly 
connected with each other by viscous friction, so that the torque of the frictional force is 
proportional to the relative angular velocity. Let the motion of one and the other pendulum is 
decelerated alternately by attaching a brake shoe providing suppression of the self-oscillations 
due to the incorporated sufficiently strong viscous friction. Denoting the angular coordinate of 
the first and the second pendulum as x and y, and the angular velocities as u and v, we write 
down the equations 
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Parameters are assigned as follows: 
 4/,250,8.0,0003.0,087.0,16.0,36.0 0 TTTDba ====ε=μ== . (8) 

To explain the functioning of the system, let's start with the situation when one pendulum 
exhibits self-oscillation, and the second is braked. Due to the fact that the parameters are chosen 
in accordance with the reasoning at the end of the previous section, the basic frequency of the 
self-oscillatory mode is half of that of the second oscillator. Therefore, when the brake of the 
second pendulum is switched off, it will begin to swing in a resonant manner due to the action of 
the second harmonic from the first pendulum, and the phase of the oscillations that arise will 
correspond to the doubled phase of the oscillations of the first pendulum. As a result, when the 
second pendulum approaches the sustained self-oscillatory state, its phase appears to be doubled 
in comparison with the initial phase of the first pendulum. Further, the first pendulum undergoes 
braking, and at the end of this stage, its oscillations will be stimulated in turn by the action of the 
second harmonic from the second pendulum, and so on. 



Since the system under consideration is non-autonomous, with periodic coefficients, one 
can go on to description of the dynamics in discrete time using the Poincaré stroboscopic map. In 
our case, taking into account a symmetry of the system in respect to substitution 

2/,, Tttvuyx +↔↔↔ , it is appropriate to use the mapping in half a period of modulation, 
determining the state vector at the instants of time as 
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The Poincaré map 
 )(2/1 nTn XFX =+  (10) 

may be easily implemented as a computer program that integrates equations (2) on a half-period 
of modulation. 

Since in the process of the system functioning each new stage of the excitation transfer to 
one or another pendulum is accompanied by a doubling of the phase of oscillations, this 
corresponds to the expanding circle map (Bernoulli map) for the phase. If a volume contraction 
takes place along the remaining directions in the state space of the system, this will correspond to 
occurrence of the Smale-Williams solenoid as attractor of the Poincaré map (10). 

3. Numerical results 
Fig. 4 shows waveforms for the angular coordinates of the first and second pendulums on 

time, which are obtained by numerical integration of equations (7) and illustrate the functioning 
of the system in accordance with the mechanism described in the previous section. 

The observed sustained motion of the system is in fact chaotic, since the oscillation phases 
in the successive stages of activity vary, obeying the expanding circle map. We are going to 
illustrate it now, but it should be noted first that in the region of the high-amplitude oscillations 
their shape differs significantly from the sinusoidal. In this case, evaluation of the phase through 
the ratio of the variable and its derivative as arctangent is not so satisfactory, and an alternative 
method of the phase determination is needed. It is appropriate to define the phase using a value 
of the time shift of the waveform with respect to a given reference point, normalized to the 
characteristic period of the self-oscillatory mode. Let t be a time instant fixed relative to the 
modulation profile in the activity region of one of the pendulums, and t1, t2 are the preceding 
moments of the sign change of the angular velocity from plus to minus, and 12 tt > . Then we can 
define the phase as a variable belonging to the interval [0, 1] by the relation 1

122 ))(( −−−=ϕ tttt . 



 
Figure 4: Waveforms of the angular coordinates of the first and second pendulums obtained by numerical 
integration of equations (7) with parameters (8). The gray bars correspond to the time intervals where the 
pendulums are subjected to braking 

Fig. 5 shows a diagram for the phases determined at the end parts of successive stages of 
excitation of the first and second pendulums, obtained in numerical calculations for a sufficiently 
large number of the modulation periods. As can be seen, the mapping for the phase in the 
topological sense looks equivalent to the Bernoulli map )1(modconst21 +ϕ=ϕ + nn . Indeed, one 
complete round for the pre-image nϕ  (i.e., a unit shift) corresponds to a double round for the 
image 1+ϕn . 

Some distortion of the resulting function are related to details of the dynamics, which were 
not captured within the framework of the given above qualitative description, and they do not 
play a significant role due to the inherent structural stability of the dynamics under study. 



 
Figure 5: A diagram illustrating transformation of the phases of pendulums in successive stages of 

activity every half a period of modulation 

  

Figure 6: Attractor of the Poincaré stroboscopic map, which is a Smale-Williams solenoid in projection 
onto the plane of two of variables defined by (9) (a), and attractor of the system with continuous time (7) 
in the projection from the extended phase space onto the phase plane of the first pendulum (b) 

Figure 6a shows attractor of the Poincaré stroboscopic map. Although visually the object 
looks like a closed curve, in fact it has a fine transverse structure structure, visualization of 
which requires accurate high-accuracy calculations, and evolution in discrete time corresponds to 
jumps of the representing point around the loop accordingly to iterations of the Bernoulli map. 
Figure 6b shows attractor of the system with continuous time in projection from the extended 
phase space to the phase plane of the first oscillator. The portrait is represented in the technique 
of the gray color imaging. At each step of integrating the equations, at corresponding coordinates 
the gray tone is assigned determined in such way that the number encoding this tone increases 
every time by one as the point hits the respective pixel. 

To obtain spectrum of Lyapunov exponents, we use the traditional algorithm [15-17] and 
perform numerical integration of equations (7) by a finite-difference method together with a 
collection of four sets of variation equations 
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and the procedure is complemented by the normalization and Gram – Schmidt orthogonalization 
of the four perturbation vectors 4,3,2,1,)~,~,~,~(~ )(
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using the definition (9). The Lyapunov exponents are evaluated as the average rates of growth or 
decrease of the accumulating sums of logarithms of the norms for the perturbation vectors before 
the normalizations. According to the results of the calculations, the parameters specifying 
according to (8) the Lyapunov exponents for the Poincaré map attractor at are the following 1 
 02.073.20,02.046.9,02.089.5,007.0650.0 4321 ±−=Λ±−=Λ±−=Λ±=Λ .  

The presence of a positive exponent Λ1 indicates chaotic nature of the dynamics. Its value 
is close to a constant equal to ...693.02ln = , which agrees with the approximate description of 
the evolution of the phase variable φ by the Bernoulli map. The action of the Poincaré map F in 
four-dimensional space is accompanied by stretching in the direction corresponding to the 
dynamical variable associated with the phase φ and contracting along the remaining three 
directions. This just corresponds to the Smale-Williams construction, namely, in the four-
dimensional space. Because of large absolute values of the negative Lyapunov exponents, the 
transverse structure of fibers of the attractor is indistinguishable in Fig. 6a. An estimate of the 
Kaplan – Yorke dimension [18] from the spectrum of Lyapunov exponents for this attractor 
gives 11.1||/1 21 ≈ΛΛ+=D . 

 

 

 
Figure 7: Graphs for the largest Lyapunov exponent of the Poincaré map versus the parameters a (a), ε (b) 
and T (c). An arrow indicates situation corresponding to the Smale-Williams attractor discussed in the 
previous section, with parameters assigned according to (8). 

                                                 
1  The exponents were obtained by averaging over 103 samples, each of which corresponded to evaluation of the 
Lyapunov exponents over 25⋅103 iterations of the Poincaré map. As error bars, the root-mean-square deviations are 
indicated found by processing the data for this sample space. 



In accordance with the expected structural stability, the same type of chaotic attractor 
should persist under variation of system parameters in some region, and this is indeed the case. 
Fig. 7 shows graphs of Lyapunov exponents versus parameters a, ε, T. As can be seen, in a 
neighborhood of the point corresponding to the parameter set (8) there is a region where the 
positive Lyapunov exponent Λ1 of the Poincaré map remains close to ln2. In the same region, as 
can be verified, correspondence in the topological sense with the Bernoulli map persists for the 
iteration diagrams for the phases (like in Fig. 5). Appearance of significant deviations of Λ1 from 
ln2, including drops to negative values ("windows of regularity") indicates violation of the 
hyperbolicity. Note that the width of the hyperbolicity region with respect to the parameter a  is 
rather small because of the strong dependence of the frequency of self-oscillations on this 
parameter nearby the operating point while the mechanism of the system functioning with 
resonant energy transfer between the alternately excited oscillators is critical to the ratio of the 
frequencies for small and large amplitudes 2:1. 

Fig. 8 shows other species of attractors occurring in our system of alternately excited 
Froude pendulums outside the parameter region of the hyperbolic chaos. In the figure caption, 
the Lyapunov exponents are listed, which make it possible to identify the types of the attractors. 
Fig.8a corresponds to a periodic mode associated with attracting limit cycle in the phase space of 
the system, and in the Poincaré map the attractor consists of three points visited in turn. All the 
Lyapunov exponents are negative. Fig. 8b corresponds to a quasi-periodic motion, which in the 
Poincaré section is represented by a smooth closed invariant curve. The largest Lyapunov 
exponent is zero (up to an error of the computations), and the remaining exponents are negative. 
Fig.8c depicts a nonhyperbolic chaotic attractor, in which one Lyapunov exponent is positive 
(significantly different from ln2), and the remaining ones are negative. This attractor corresponds 
to a chaotic regime of motion of the Froude pendulums accompanied by rotations. Fig.8d also 
represents a chaotic mode, in which the movements of the pendulums are of rotational nature, 
but in this case the attractor has two positive Lyapunov exponents; according to commonly 
accepted terminology, this is hyperchaos. 

  

    
Figure 8: Attractors of the Poincaré stroboscopic map (upper row) and attractors of the continuous time 
system in projection from the extended phase space onto the phase plane of the first pendulum. 

(a) Periodic mode, 31.0=a , )38.24,05.18,79.6,23.0( −−−−=Λ ;  
(b) Quasiperiodic mode, 32.0=a , )38.24,34.17,03.7,000.0( −−−=Λ ;  
(c) Chaotic mode, 42.0=a , )28.32,62.18,78.1,00.1( −−−=Λ ;  
(d) Hyperchaos, 55.0=a , )27.31,09.30,34.0,95.0( −−=Λ . 



4. Hyperbolicity test 
A method for verifying the hyperbolicity proposed in [19, 20] is that for a typical trajectory on 
an attractor, the linearized variation equations for the perturbation vectors are solved first in 
direct time to determine the unstable subspace, and then a set of the variation equations is 
integrated in the inverse time along the same reference trajectory to determine the stable 
subspace. Further, for a set of points of the trajectory, the angles between these subspaces are 
evaluated, and their distribution is analyzed. If it is separated from the region of zero angles, it 
indicates hyperbolic nature of the attractor, whereas the appearance of the angles close to zero 
indicates that there is no hyperbolicity. This method was applied to a number of specific model 
systems and allowed confirming the hyperbolic nature of attractors [7-9, 21-24]. 

In the modified version of the method [25,26,27], which is especially convenient for 
multidimensional systems, to identify the contracting subspace one deals not with vectors 
belonging to it, but with vectors defining its orthogonal complement, determined by the 
conjugate linearized equations. 

In our case, the conjugate equations have the form 
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They are constructed in such way that for the vectors given by the equations (11) and (12), the 
scalar product defined by the relation 
 )()(~)()(~)()(~)()(~~ ttvttyttuttx υ+ς+η+ξ=⋅ξx  (13) 

should be constant in time. 
In our case, in the parameter region where the Smale-Williams attractor occurs, the 

unstable subspace for a trajectory belonging to the attractor is one-dimensional, as well as the 
orthogonal complement to the stable subspace. First, we perform computations to get a long 
segment of the reference trajectory of system (7) x(t), u(t), y(t), v(t). Then, along this trajectory, 
the equations in variations (11) are numerically integrated that gives a vector )~,~,~,~()(~ vyuxt =x  
associated with a positive Lyapunov exponent. Further, along the same trajectory in the inverse 
time, the conjugate equations are integrated that gives the vector ),,,()( υζηξ=tξ . At the end of 
the procedure, the angles are calculated through the scalar product of pairs of vectors related to 
identical points of the reference trajectory, namely, at time instants corresponding to the Poincaré 
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Fig. 9. Histograms of the angles of intersection of stable and unstable subspaces for the hyperbolic 
attractor of Poincaré map of the system (7) 

Fig. 9 shows the histogram of the angles of intersection of stable and unstable subspaces 
for a trajectory on the attractor of the Poincaré map of the system with parameters assigned 



according to (8). The fact that the distribution is separated from zero, confirms the hyperbolic 
nature of the attractor. Similar results are obtained for parameters of the system in a certain 
range, which corresponds to the inherent roughness (structural stability) inherent to the 
hyperbolic attractor. 

Conclusion 
We have proposed a new example of a mechanical oscillator with hyperbolic chaotic attractor. 
The system is constructed on the basis of two connected Froude pendulums on a common shaft 
rotating at constant angular velocity, and they are alternately damped by periodic application of 
the additional friction. A mathematical model is formulated and its numerical study is carried 
out. It is shown that, with appropriate specification of the parameters, attractor of the Poincaré 
stroboscopic map is a Smale-Williams solenoid. The hyperbolicity of the chaotic attractor is 
confirmed with the help of a criterion based on analysis of angles of intersection of stable and 
unstable invariant subspaces of small perturbation vectors with verification of the absence of 
tangencies between these subspaces. 

The material presented is interesting, first, in a sense of filling the hyperbolic theory, a 
deeply developed and advanced section of the modern theory of dynamical systems, which gives 
a rigorous justification for the presence of structurally stable chaos, with the physical content. 

The proposed system, apparently, allows implementation as a simple mechanical device, 
which would allow an experimental study of hyperbolic chaos. Due to visibility of the dynamics 
of the system, which is a mechanical object, this kind of experiment could be useful, particularly, 
in practical laboratory studies for graduate and post-graduate students specializing in the field of 
nonlinear dynamics. 

The approach considered here can serve as example for constructing a wide class of objects 
of various nature that demonstrate hyperbolic attractors on the basis of subsystems, the transfer 
of oscillatory excitation between which take place in resonance due to special selection of the 
integer ratio of frequencies of small and large oscillations. For example, it can be done for a 
system of two Bonhoeffer-van der Pol electronic oscillators with external control so that they 
alternately undergo damping or excitation of relaxation oscillations whose frequency is twice or 
three times smaller than the frequency of small oscillations [28]. 

The work was supported by the grant of Russian Science Foundation No. 15-12-20035. 
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