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Topic and aim. The aim of the work is to consider an easy-to-implement system demonstrating the Smale–Williams
hyperbolic attractor based on the Bonhoeffer–van der Pol oscillator, alternately manifesting a state of activity or suppression
due to periodic modulation of the parameter by an external control signal, and supplemented with a delayed feedback circuit.
Investigated models. A mathematical model is formulated as a non-autonomous second-order equation with delay. A scheme
of the electronic device that implements this type of chaotic behavior is proposed. Results. The results of numerical simulating
of the system dynamics, including waveforms, oscillation spectra, plots of Lyapunov exponents, a chart of regimes on the
parameters plane are presented. The circuit simulation of the electronic device using the software Multisim is carried out.
Discussion. The Smale–Williams attractor in the system appears due to the fact that the transformation of the phases of the
carrier for the sequence of radio-pulses generated by the system corresponds to a circle map expanding by an integer factor.
The important feature of the system is that the transfer of excitation from one to the next stage of activity with doubling (or
tripling) of the phase occurs due to the resonance mechanism involving a harmonic of the developed oscillations that have
twice (or triple) longer period than that of small oscillations. Due to the hyperbolic nature of the attractor, the generated
chaos is rough, that is, it is characterized by low sensitivity to variations in the parameters of the device and its components.
Our scheme corresponds to a low-frequency device, but it can be adapted for chaos generators also at high and ultrahigh
frequencies.
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Introduction

Construction of different variants of coupled systems based on self-oscillating elements descri-
bed by the Bonhoeffer–van der Pol equations, including systems with delayed feedbacks, is of interest
for many reasons. First, the Bonhoeffer–van der Pol oscillator can be easily implemented in the form
of an electronic circuit and in combined circuits that demonstrate complex dynamics. At the same time
it can serve as a basis for constructing signal generators with wide functional capabilities. Secondly,
as the Bonhoeffer–van der Pol equation corresponds to the well-known FitzHugh–Nagumo neuron
model up to replacement of the variables [1–5], we can speak about the application of such systems
for model description of the phenomena taking place in neurosystems, and about analog simulation of
these phenomena using electronic circuits. Third, the proposed study contributes to the development
of examples of dynamical behavior that are known in the modern theory of dynamical systems on
the level of abstract mathematical representations, but are still awaiting detection and application in
real-world systems. This field of research may open up the possibility of building technical devices
that reproduce the properties of natural neurosystems, as well as generators of rough chaos, insensitive
to variations in the parameters of the device and its components.

The uniformly hyperbolic attractors taken into consideration according to the mathematical
theory developed in the 1960–1970s, serve as a strictly justified example of deterministic chaos in
dynamical systems [6–13]. These are attractors composed exclusively of saddle-type phase trajectories,
the characteristic feature of which is that each trajectory on the attractor has many neighboring
trajectories approaching it and many other trajectories moving away from it (stable and unstable
manifolds).

The fundamental mathematical fact is that hyperbolic chaos has the property of roughness, or
structural stability. In the theory of oscillations, it is customary to postulate that rough systems showing
motions that do not change qualitatively with slight variation of parameters [14–16] should be of interest
from both theoretical and practical point of view. This property seems to be extremely important for
natural systems and technical applications, since it ensures insensitivity of the chaos characteristics in
systems with hyperbolic attractors in respect to inaccurate parameter settings, manufacturing errors,
various imperfections and disturbances.

An example of a hyperbolic attractor is the Smale–Williams solenoid [6–9]. Let us consider a
region in the form of a torus in three-dimensional space and a map that stretches the torus twice with
sufficiently strong transverse compression per one step of discrete time and folds it into a twice loop
placed inside the original torus. At every next step of the transformation, the total volume of the object
decreases (this means that the map is dissipative), and the number of turns doubles. In the limit of an
infinite number of steps, this number tends to infinity, and the formation called solenoid appears, being
a hyperbolic attractor. In the transverse direction, the solenoid has the structure of Cantor set. Similar
construction can be made using longitudinal stretching not by factor two, but in a greater number of
times M = 3, 4, . . . and folding of loops with the corresponding number of coils M , which complies
with hyperbolic attractors in the form of solenoids of a different topological type.

As the theory of dynamical systems and its applications were developing, it turned out that
numerous examples of chaotic dynamics, known in different fields of science and technology, do
not satisfy the conditions of the hyperbolic theory. Only recently, physical examples of systems with
structurally stable hyperbolic chaos have been proposed and implemented [17]. Several such examples
are based on systems using delayed feedback [18–22].

The article describes a simple-to-implement system that demonstrates the Smale–Williams hyper-
bolic attractor, where the Bonhoeffer–van der Pol oscillator appears to be the main element, which is
alternately in the state of excitation or suppression due to periodic modulation of the parameter by
an external control signal and supplemented by a delayed feedback circuit. The attractor is hyperbolic
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due to the fact that the transformation of the filling phases for the generated sequence of radio pulses
corresponds to a circle map stretching an integer number of times. A feature of this system is that the
excitation transfer from one stage of activity to another with phase doubling is carried out in a resonant
manner at the harmonic of relaxation oscillations, the period of which is two or three times longer
than that of small oscillations. A mathematical model is formulated, described by a non-autonomous
second-order equation with a delayed argument, and the results of numerical simulation of the system
dynamics, including waveforms, oscillation spectra, graphs of Lyapunov exponents, and a chart of
regimes on the parameter plane are presented. The circuit of an electronic device that implements this
type of chaotic behavior is suggested, and its dynamics is simulated using Multisim software product.

1. The Bonhoeffer–van der Pol oscillator. Weakly nonlinear

and relaxation self-oscillations

The Bonhoeffer–van der Pol oscillator is a self-oscillating system described by the equation

ẍ− (A− x2)ẋ+ x = K. (1)

When parameter A has small positive values, approximately sinusoidal self-oscillations appear
in the system with the frequency being close to ω = 1. When A increases, transition to relaxation
oscillations, which substantially differ from the sinusoid, takes place, and the main frequency decreases.
If parameter K is different from zero, then both odd and even harmonics are presented in the oscillation
spectrum, while for the classical van der Pol oscillator, which corresponds to the case when K = 0,
only odd harmonics are presented. Fig. 1 shows the portraits of attractors on the phase plane of
equation (1) in the regimes of small quasi-harmonic oscillations and large, relaxation oscillations when
K = 0.5. If parameter A is small, then the dimensionless circular oscillation frequency is close to 1.
When A = 5.5 the fundamental frequency is approximately 1/2, and the second harmonic frequency is
close to the frequency of small oscillations respectively. When A = 9.66, the fundamental frequency
is approximately 1/3, and the frequency of the third harmonic is close to the frequency of small
oscillations.

In Fig. 2, a, the resonance buildup of oscillations of the linear oscillator ÿ + y = εx under the
second harmonic of the self-oscillating system (1) according to numerical solution of the problem with
parameters A = 5.5, K = 0.5, ε = 0.1 is illustrated. Visually, the period of oscillations of a linear
oscillator is twice as large as the period of self-oscillations of the system (1), so that the frequency of

Fig. 1. Evolution of phase portraits for the model (1) in the case K = 0.5 for different values of the parameters:
A=0.3 (a), oscillation frequency ω≈1; A=5.5 (b), oscillation frequency ω≈1/2; A=8.5 (c), oscillation frequency ω≈1/3
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Fig. 2. Resonant excitation of a linear oscillator by the second (a) and the third (b) harmonics of the self-oscillating system
as obtained from numerical solution of the set of equations ẍ − (A − x2)ẋ + x = K, ÿ + y = εx at K = 0.5, ε = 0.1,
A = 5.5 (а) and A = 9.66 (b)

the second harmonic of self-oscillations coincides with the natural frequency of the linear oscillator.
A similar diagram in Fig. 2, b the resonant buildup of oscillations under the action of the third harmonic
when A = 9.66 is shown.

In [23], the idea of using situations of an integer ratio of the frequencies of small and large
oscillations with resonant excitation of oscillations by means of harmonics to construct a system
with Smale–Williams type attractors based on two subsystems – weakly coupled Bonhoeffer–van der
Pol oscillators, which alternate between activity or suppression due to modulation of the parameters
controlling the excitation in antiphase for both subsystems was proposed.

80
Kuznetsov S.P., Sedova Yu.V.

Izvestiya VUZ. Applied Nonlinear Dynamics, 2019, vol. 27, no. 1



In this case, the parameters are chosen so that at the stage of activity the relaxation oscillations
have a period an integer number of times longer than the period of small oscillations. Due to the
transfer of excitation alternately from one oscillator to another, the Smale–Williams attractors can be
obtained with different values of the stretching factor of the angular variable in the phase space of the
map describing the change of the state of the system during the modulation period, the angular variable
being the phase of oscillations. A similar principle was used in [24] to construct a mechanical system
with hyperbolic attractor based on the Froude pendulums with alternating braking.

In this paper we show that, introducing an additional delayed feedback circuit, it becomes
possible to implement the Smale–Williams attractor in a system based on only one Bonhoeffer–van
der Pol oscillator with parameter modulation. The corresponding electronic device turns out to be
simpler and contains fewer components than the system based on two oscillators. From the point of
view of the mathematical description and the theory of dynamical systems it is more complicated,
because due to the presence of delay the phase space is infinite-dimensional.

2. Oscillator with additional delayed feedback

and modulation of the excitation parameter

Let us consider the Bonhoeffer–van der Pol oscillator, where the control parameter slowly varies
in time according to a periodic law, providing alternating excitation and damping of the oscillations,
and additional delayed feedback is introduced. Let the parameter remain constant for some time at
a stage of excitation and equal to the maximum value of a, then it decreases to the negative value
(−c), and then increases again, reaching the maximum value. We write the dynamical equations in the
following form:

ẍ− (f(t/T + 1/4)− x2)ẋ+ x = K + ε(x(t− τ)− x), (2)

where x is a dynamic variable, K is a parameter, ε is a coefficient characterizing the value of the
delayed feedback, τ is the delay time. The function f determines the dependence on the time of the
control parameter A and, on the period of its argument being one, is given by the following relations

f(ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a, 0 < ξ ≤ τ1,
(a− c)ξ+ cτ1 − aτ2

τ1 − τ2 , τ1 < ξ ≤ τ2,
(c− a)ξ+ aτ2 − c

τ2 − 1
, τ2 < ξ ≤ 1.

(3)

It is important to emphasize that the system with delay is characterized by an infinite dimension
of phase space [25–28]. In fact, in order to indicate the condition that makes it possible to unambiguously
determine the subsequent dynamics, it is necessary to specify not only the values x and ẋ at the initial
moment of time, but also the function x(t− τ) on the previous time interval of duration τ.

We can determine stroboscopic map of the system (2) (Poincaré map) for the modulation period
T , introducing it formally as

Xn+1 = FT (Xn), (4)

where vector Xn, which defines the system state at the moment tn = nT , should be interpreted as an
element of infinite-dimensional space in this case.

Let us explain the principle of the system functioning in the regime with hyperbolic attractor.
At the stage of activity, the oscillator performs relaxation type self-oscillations. As the parameter a

value being chosen appropriately, the main self-oscillation frequency appears to be an integer number
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of times of M less than the frequency of small oscillations (particularly, we consider cases M = 2

and 3). During the attenuation stage, the oscillations practically disappear, but when the time for a new
stage of activity comes, the appearance of oscillations is stimulated in a resonant manner by the M th
harmonic of the signal, which arrives from the delayed feedback circuit, having been emitted at the
previous stage of the presence of developed relaxation oscillations of the oscillator. Therefore, the phase
of these oscillations corresponds to the phase of the main component of the oscillations multiplied by
the factor M . As a result, when the newly appearing oscillations of the oscillator reach the steady
state of relaxation self-oscillations, their phase will correspond to the oscillation phase multiplied by
the factor M in comparison with the phase at the previous stage of activity. Then the process repeats
itself over and over again. Therefore, the expanding circle map takes place for phases of the oscillatory
process at successive stages of activity. With compression in other directions in the phase space, this
corresponds to formation of the Smale–Williams solenoid for the Poincaré map (4). In the problem
under consideration, this solenoid is an object embedded in the infinite-dimensional phase space of the
map (4).

Let us turn to illustrations of the functioning of the system, paying attention to the results of
numerical simulation. The equations were solved using the Runge–Kutta method of the 4th order
adapted for the system with delay. To do this, the current values of variables and functions at each step
of the difference scheme are stored in the form of an array of data on the previous time interval τ, so
that they can be used at the right time to perform calculations when it is necessary to substitute the
delayed values of these quantities.

Figures 3 and 4 show the graphs of the time dependence for the variable x and its derivative
over several periods of modulation for the case, when the transfer of excitation from the previous stage
of activity to the next one is carried out at the second and third harmonics, respectively, for a = 5.5

and 9.66. The other parameters are

K = 0.5, c = −2, τ1 = 0.4, τ2 = 0.5, ε = 0.01, T = 200, τ = T/2. (5)

In order to make sure quantitatively, that there is a correspondence between the dynamics of
the system during the modulation period and the procedure that determines formation of the Smale–
Williams solenoids, we turn to the construction of diagrams of the phase dependences at the next
stage of activity on the phase at the previous stage of activity. It should be noted that in the region
of developed self-oscillations, the form of the oscillations differs significantly from the sinusoidal one,
therefore, the calculation of the phases through arctangent of the ratio of the variable and its derivative
leads to unsatisfactory results. An alternative is to use the value that determines the time shift relative to
a given reference point, normalized to a characteristic period of oscillation. Let t be an initial moment
of a stage of braking of the oscillator, t1 and t2 be the preceding moments of the oscillator passing
through the section x = 0, where t2 > t1. Then it is possible to determine the angular (phase) variable
which belongs to the interval [0,1] according to the relation � = (t− t2)/(t2 − t1). The calculation
of this quantity is easily programmed and is performed in the process of numerical simulation of the
system dynamics.

The diagrams in Fig. 5, based on the results of numerical solution of equations (2) on a large
number of modulation periods, illustrate the transformation of the oscillation phases in successive stages
of activity in accordance with the twice-stretching circle map when a = 5.5 (a) and the triple-stretching
map when a = 9.66 (b).

Fig. 6 shows portraits of attractors of stroboscopic map. These are two-dimensional projections
of the Smale–Williams solenoids for the Poincaré map of our system with infinite-dimensional phase
space. The intrinsic fractal transverse structure of fibers is indistinguishable here due to the high degree
of transverse compression at every step of the map.
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Fig. 3. a, b – waveforms x(t) and ẋ(t) of the system (2), a = 5.5, K = 0.5, c = −2, ε = 0.01, T = 200, τ = T/2,
τ1 = 0.4, τ2 = 0.5; c – the function f governing the modulation of the control parameter
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Fig. 4. a, b – waveforms x(t) and ẋ(t) of the system (2), a = 9.66, K = 0.5, c = −2, ε = 0.01, T = 200, τ = T/2,
τ1 = 0.4, τ2 = 0.5; c – the function f governing the modulation of the control parameter
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Fig. 5. Iteration diagrams for the oscillation phases of the system (2) at parameters a = 5.5 (а) and a = 9.66 (b). Other
parameters are K = 0.5, c = −2, ε = 0.01, T = 200, τ = T/2, τ1 = 0.4, τ2 = 0.5

Fig. 6. Portraits of attractors of the Poincaré map over the modulation period in the projection onto a plane of variables (x, ẋ)
at a = 5.5 (a) and a = 9.66 (b). Other parameters are K = 0.5, c = −2, ε = 0.01, T = 200, τ = T/2, τ1 = 0.4, τ2 = 0.5
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For the system with delay, the total number of Lyapunov exponents is infinite. Nevertheless,
we can evaluate the first few exponents in descending order of their values within the Benettin
technique adapted for a system with delay [27–30]. For this the numerical solution of the equation
(2) is simultaneously performed together with the corresponding number of equations in variations

¨̃x− (f(t/T + 1/4)− x2) ˙̃x+ 2xẋx̃+ x̃ = ε(x̃(t− τ)− x̃) (6)

and with orthogonalization of the Gram–Schmidt perturbation vectors at each step of integration of the
equations. (Note that the perturbation vector is specified by the function x̃(t) on a finite interval equal
to the delay time.) The Lyapunov exponents of the attractor shown in Fig. 6, a, for the map over a
period are

Λ = { 0.690, −7.950, −8.750, ...}, (7)

and the dimension of the attractor in the stroboscopic section according to Kaplan–Yorke is DKY =

= 1 + Λ1/|Λ2| ≈ 1.09. For the attractor shown in Fig. 6, b, the Lyapunov exponents are

Λ = {1.081, −8.642, −9.270, ...}, (8)

and the Kaplan–Yorke dimension is DKY = 1 + Λ1/|Λ2| ≈ 1.13.
Let us note that the positive Lyapunov exponent in the spectrum of exponents (7) is close to ln 2,

and in the spectrum of (8) it is close to ln 3. This corresponds to an expanding circle map for phases
at successive stages of activity, two or three times, respectively, which is consistent with the system
functioning mechanism described above.

Figure 7 shows the dependence of three Lyapunov exponents on parameter a when the remaining
parameters are fixed. It can be seen that in certain parameter intervals the largest Lyapunov exponent
has the values corresponding to the stretching of the angular variable by 2 and 3 times. This corresponds
to implementation of attractors in the system in the form of Smale–Williams type solenoids with double

Fig. 7. The dependence of the largest three Lyapunov exponents of the system (2) on the parameter a. Other parameters:
K = 0.5, c = −2, ε = 0.01, T = 200, τ = T/2, τ1 = 0.4, τ2 = 0.5. The intervals corresponding to Smale–Williams
attractors with double and triple expanding of the phase variable are indicated respectively by the labels SW2 and SW3
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Fig. 8. Chart of regimes for the parameter plane (K, a) of the system (2), where areas of regimes, which are indicated
by definite color and the corresponding inscriptions, are diagnosed by the values of Lyapunov exponents. The remaining
parameters are c = −2, ε = 0.01, T = 200, τ = T/2, τ1 = 0.4, τ2 = 0.5

or triple loop folding at one step of construction with sufficiently strong transverse compression, which
is proved by presence of negative exponents quite large in absolute value. These intervals correspond to
structurally stable hyperbolic chaos as a smooth nature indicates of the Lyapunov exponent dependence
on the parameter. In the areas of transitions between the plateaus on the graph, one can see dips intrinsic
to non-hyperbolic chaos, corresponding to periodicity windows.

Figure 8 shows a chart of regimes of the system (2) on the parameter plane (K, a). To construct
it, a selected area along two coordinate axes on the grid with a small step was scanned. Each pixel
is marked in color in accordance with the regime diagnosed at a given point that occurs during the
numerical integration of equations. If all exponents are negative, then this corresponds to a regular
periodic regime, namely, an attracting periodic point of the Poincaré map. The closeness of the largest
exponent to zero indicates quasiperiodic dynamics, which in the phase space of the Poincaré map
corresponds to an attractive closed invariant curve. The presence of a positive exponent shows the
chaotic nature of attractor of the Poincaré map, which can be hyperbolic or non-hyperbolic.

While plotting the chart, the proximity of the positive Lyapunov exponent of the map for the
modulation period to the value ln 2 or ln 3, corresponding to the double or triple stretching circle map,
was taken as a sign of the occurrence of the hyperbolic Smale–Williams attractor. Check computations
confirm that the hyperbolicity region is determined quite accurately with the help of this method: the
form of the map built at the points of the found region, qualitatively corresponds to Fig. 5 (the graphs
are composed of 2 or 3 branches). In accordance with its inherent property of structural stability, the
hyperbolic chaos occupies continuous regions on the parameter plane, marked as SW2 and SW3.

Figure 9 shows power spectra of the signal generated by the system for both types of the Smale–
Williams attractor SW2 and SW3 (with doubling and tripling the number of loops at the construction
stage). The spectra were computed by means of processing time series for the dynamic variable x

obtained by numerical integrating of the equations using the method of statistical estimation of the
spectral density of random processes [31, 32].1 It can be seen from the figure that in each of the

1To obtain a spectrum, the time series is divided into sections of a certain duration which exceeds the characteristic time
scale of the signal, followed by multiplying a segment of the time series by the «window» function (to improve the quality
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Fig. 9. The power density spectra of the signal x(t) in logarithmic scale at a = 5.5 (a) and a = 9.66 (b). Other parameters:
K = 0.5, c = −2, ε = 0.01, T = 200, τ = T/2, τ1 = 0.4, τ2 = 0.5

cases taken into consideration the spectrum is continuous, the same as in random process although it
is characterized by a noticeable indentation – the occurrence of blurry peaks due to the presence of
correlations between waveforms at the intervals spaced by the delay time interval.

3. Electronic generator of rough chaos and its circuit simulation

Let us consider the circuit implementation of the above-described idea of obtaining hyperbolic
chaos in a system where a self-oscillating element with alternating excitation and damping is supplemen-
ted by a delayed feedback circuit for transmitting excitation with phase doubling at the next stage
of activity due to the use of the second harmonic of the resulting relaxation oscillations. Fig. 10
shows a circuit, the main element of which is an oscillator based on the oscillatory circuit L1C1.
The introduction of negative resistance into the circuit is provided by the operational amplifier OA1.
The value of introduced resistance at any specific time depends on the instantaneous source-drain
resistance of the field-effect transistor Q1. The control voltage applied to the gate from the source V1
remains zero for a certain part of the modulation period (the oscillator is active), and the voltage is less
than zero for the rest of the period (oscillations are suppressed), and time dependence of the voltage is
expressed by a triangular function. The parameters of the negative resistance elements are chosen so
that the zero gate voltage corresponds to arising relaxation oscillations with a frequency half of that
for the linear oscillations.

The diode D1 is included into the oscillatory circuit, which ensures the limitation of the level
of oscillations and the presence of intense second harmonic at large amplitudes of oscillations. When
the next stage of oscillator activity begins, the development of the oscillations, which start with small
amplitude, is effectively stimulated in a resonant manner because of the coupling through the capacitor
C2 due to the second harmonic of the oscillations received through the delay line T from the previous
stage of the developed relaxation oscillations. Since the transfer of excitation is carried out through
the second harmonic, this should be accompanied by doubling of the phase, which, in the presence of
compression in other directions in the state space, will correspond to an attractor of the Smale–Williams
type in a stroboscopic map that determines the evolution of the system over a period.

Fig. 11 shows the waveforms obtained by simulation with the help of Multisim software, which
demonstrate the operation of the circuit according to the above-described mechanism.

of spectral analysis due to suppression of the effect of signal mismatch at the edges of the partition intervals). Next, Fourier
transform is performed on each section, and the squares of the amplitudes of the spectral components are averaged over the
set of partition sections.
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Fig. 10. Generator circuit with periodic excitation and delayed feedback, realizing hyperbolic chaos

Fig. 11. Waveforms of voltages U1 on capacitor C1 and control voltage V1 on the gate of field effect transistor V1 obtained
with the help of a virtual oscilloscope in the Multisim simulation. The nominal values of the circuit elements correspond to
Fig. 10
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Fig. 12. Diagram illustrating the phase transformation in successive stages of activity (a) and the oscillation spectrum in
logarithmic scale (b) for the oscillator as obtained in the Multisim simulation of the circuit in Fig. 10

To confirm the hyperbolic nature of chaos, it is necessary to make sure that successive stages
of activity correspond to phase transformation according to the expanding map. The same as in the
previous section, as a phase, we determine the value of the time shift relative to a given reference point
normalized to the characteristic period of relaxation oscillations.

To plot a graph for values related to successive stages of activity �n and �n+1 we can use the
simulation data recorded in a file in the Multisim software for a sufficiently long time with a small
sampling step (much smaller than the period of low-amplitude oscillations). The graph obtained by
processing these data is shown in Fig. 12, a.

Since during the modulation period there is a doubling of the phase variable, the graph consists
of branches with a slope coefficient close to 2. Fig. 12, b shows the spectrum of the signal generated
by the oscillator in logarithmic scale. The spectrum shows obvious similarity with Fig. 9, a, which was
obtained for the mathematical model in the form of the delay equation (2).

Conclusion

The possibility of rough hyperbolic chaos associated with the Smale–Williams attractor in
a system based on the Bonhoeffer–van der Pol oscillator with delayed feedback upon alternating
excitation and suppression of activity due to periodic modulation of a parameter is demonstrated by
numerical calculations. A circuit of an electronic device that implements the type of dynamics under
consideration is developed, and the results of circuit simulation confirming this fact, are presented in
the Multisim software.

The obtained results are interesting for constructing electronic chaos generators which are
insensitive to parameter variations and noise, as well as from the point of view of possible implementing
similar phenomena in different systems, for example, in neurodynamics, namely for neurons with
delayed interaction and for analog simulation of such systems.

The considered approach can be regarded as an example for design of various objects with
hyperbolic attractors based on systems in which the transfer of the oscillatory excitation between
successive stages of activity separated by damping stages is carried out in a resonant manner due to the
difference in the frequencies of small and large oscillations by an integer number of times. Structurally,
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the scheme is simpler than the previously proposed versions of systems with delay that demonstrate
hyperbolic chaos [18, 19], due to the absence of an additional signal source with the frequency close
to the frequency of the involved oscillator.
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