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Abstract—On the example of three coupled identical ring 
oscillators, the coexistence of two stable homogeneous tori 
embedded in each other, corresponding to the regimes of 
successive activity of oscillators, is established. It is shown that 
a small stable torus is born from a stable periodic regime as a 
result of supercritical Neirmark-Sacker bifurcation. A large 
torus is formed as a result of saddle-node bifurcation. We 
present a study of the formation of tori coexistence as well as 
long transient dynamics on the threshold of bistability. 
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I. INTRODUCTION 

Bistability is one of fundamental properties of nonlinear 
dynamical systems [1]. The simplest case of multistability 
can be associated with the bifurcation leading to the loss of 
symmetry of an equilibrium state, when two equilibrium 
states symmetrical to each other coexist after the bifurcation. 
This type of bifurcation corresponds to the so-called Turing 
bifurcation, which underlies morphogenesis. Another 
example of the emergence of multistability is associated with 
generalized Andronov-Hopf bifurcation (it can be Bautin 
bifurcation, or subcritical Andronov-Hopf bifurcation) when 
up to the threshold of the bifurcation of the equilibrium state 
in the phase space, a couple of cycles are generated as a 
result of the saddle-node bifurcation, one of which is stable 
and coexists with stable equilibrium. The literature is widely 
known for many other, more complex examples of bi- and 
multistability, as well as methods for controlling coexisting 
equilibria. 

The bistability of main dynamical regimes plays a special 
role in biology. For example, in a recent paper [2], it is 
suggested that the saddle-node “ghost” can be a minimal 
dynamical mechanism which enables processing of time-
varying growth factor signals. Critical organization in the 
vicinity of a saddle-node bifurcation enables transient 
memory of the receptor activity to be realized via the 
metastable “ghost” state. 

The simplest type of multistability, such as the 
coexistence of equilibrium states, allows us to describe cell 
proliferation, which in the presence of cell–cell 
communication, could provide a mechanism for reliable 
decision making in the presence of noise, by triggering 
cellular transitions [3]. Multistability can also be 
implemented for more complex dynamical behavior. For 
example, the multistability of chaotic attractors with other 
simpler attractors, or even with other types of chaotic 
attractors [4] are known. In the framework of this paper, we 

study a rarer form of multistability, when tori coexist in a 
phase space of a system. 

Quasiperiodic oscillations usually occur in ensembles of 
non-identical oscillators with the introduction of detuning. 
Another known mechanism leading to quasiperiodic 
oscillations in ensembles of identical oscillators is the 
introducing of coupling through a common mean field [5-7]. 
Among systems demonstrating such phenomenon, we would 
like to mention models of synthetic genetic networks 
(Repressilator), the coupling for which is realized through a 
common signaling molecule, which forms the mean field [8]. 
The simplest single Repressilator can be described as a ring 
of unidirectionally coupled three nonlinear genetic elements. 
In a recent paper [9], the evolution of a torus in a system of 
three coupled Repressilators was investigated. In the 
framework of this work, we will present new aspects of this 
model related to multistability. 

We show the possibility of coexistence between two 
different tori, describe the mechanism of occurrence of such 
bistability, and also show examples of the emergence of long 
transient dynamics at the threshold of occurrence of bistable 
tori. The model under consideration describes the minimal 
population of the Repressilators, the connection between 
which is organized through a sense of density, the so-called 
quorum-sensing, and we restrict ourselves to small coupling 
strength. 

II. OBJECT OF INVESTIGATION 

A. Mathematicla model 

We use the model of three three-dimensional ring 
oscillators with quorum-sensing coupling. Such model 
represent reduced version of the model for three 
Repressilators coupled via the production of special signal 
molecules called “autoinducer”. Fig.1 shows the principle 
scheme of a single repressilator. Here a, b, c are mRNAs, A, 
B, C are expressed protein repressors. S is autoinducer (AI) 
molecule which diffuses through the cell membrane. The 
resulting equations for the protein concentrations and the 
concentration S are 
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Fig. 1. Principle scheme of three coupled repressilator with quorum-
sensing feedback. 

where i = 1,2,3 for the three Repressilators, βj (j = 1,2,3) are 
the ratios of the protein decay rate to mRNA decay rate, α 
accounts for the maximum transcription rate in the absence 
of an inhibitor, and n is the Hill cooperativity coefficient for 
inhibition. For the quorum sensing pathway ks0 is the ratio of 
the S decay rate to the mRNA decay rate, and as previously 
mentioned, ks1 is the rate of production of S and κ gives the 
strength of S activation of protein C. The diffusion 
coefficient η depends on the membrane permeability to the S 
molecule. The concentration of S in the external medium Sext 

is determined according to quasi-steady state approximation 
by S produced by all Repressilators (S1, S2 and S3) and a 
dilution factor Q: 

3
321 SSS

QSext


 .   (2) 

The model parameters are fixed in accordance with what 
was proposed in [10]: β1 = 0.5, β2 = β3 = 0.1, n = 3, kS0 = 1, 
kS1 = 0.01, η = 2, κ = 15, α=2777. As control parameter, we 
use the coupling strength Q. In [9], it was shown that the 
occurrence of 2-dimensional and 3-dimensional torus is 
possible in model (1). 

 

Fig. 2. Bifurcation diagram (a) and bifurcation tree for three ring 
oscillators (1). β1 = 0.5, β2 = β3 = 0.1, n = 3, kS0 = 1, kS1 = 0.01, η = 2, κ = 
15, α=2777. TR is point of Neimark-Sacker bifurcation. Green/Blue lines 
are stable/unstable cycles. HT is hard transition. 

In Fig.2 bifurcation diagram obtained with XPPAUT [11] 
software package and bifurcation tree are presented. The 
base dynamical regime for ring oscillator (1) is rotating wave 
(RW) [9]: as a result of the identity of the oscillators, they 
have the same amplitudes, but each of the time realization is 
shifted by one third of the period relative to the next. With 
increasing of coupling strength RW undergoes the Neimark-
Sacker bifurcation at Q≈0.04819 (TR in Fig.2a). This 
bifurcation is supercritical as a result two-frequency torus is 
softly born. Further increasing of coupling strength leads to 
hard transition (HT in Fig.2b) to another torus. Such hard 
transition can signify bistability. Further resonant cycles and 
development of chaos is observed (Fig. 2b). 

III. MAIN RESULTS 

A. Bistable tori 

Now let us consider in detail interval of coupling 
strength Q (0.045 - 0.062), where we observe bistability 
between two different tori. For tracking different tori we 
have found initial conditions for each of them at Q=0.0535, 
initial conditions is mentioned in caption to Fig.3. Then 
starting from them we scan interval parameter in two 
directions, and construct bifurcation trees presented in Fig.3a 

 

Fig. 3. Bifurcation trees (a) and spectrums of Lyapunov exponents (b, c) 
for three ring oscillators (1), demonstarting bi-stable tori. β1 = 0.5, β2 = β3 = 
0.1, n = 3, kS0 = 1, kS1 = 0.01, η = 2, κ = 15, α=2777. Initial conditions for 
Q=0.0535, 1) A10=62.6, B10=5.7, C10=5.0, S10=0.03, A20=3.6, B20=226.5, 
C20=8.8, S20=0.8, A30=36.4, B30=33.6, C30=3.9, S30=0.1; 2) A10=58.6, 
B10=5.8, C10=5.0, S10=0.04, A20=2.7, B20=339.6, C20=9.8, S20==1.2, 
A30==4.2, B30==195.8, C30==8.3, S30==0.7. 

In interval Q [0.0502 - 0.0591] (grey color in Fig.3a) two 
different tori coexist. In Figs. 3b and 3c plots of the three 
largest Lyapunov exponents are presented, which were 



calculated for starting point Q=0.0535 with different initial 
conditions. Two-frequency oscillations are characterized by 
two zero Lyapunov exponents in the spectrum. In both plots 
of Lyapunov exponents it is clearly that first two exponents 
are zero. But third Lyapunov exponents are different. For the 
supercritical Neimark-Sacker bifurcation we can see typical 
dependence of the Lyapunov exponents near bifurcation 
point: for the values of parameter less then critical the largest 
Lyapunov exponent equals zero, and the second and the third 
are negative and equal each other. After bifurcation the 
second Lyapunov exponent becomes zero. At Q≈0.0502 in 
Fig.3c hard switching to the regime of another torus is 
observed. Such transition is typical for saddle-node 
bifurcation. 

 
Fig. 4. Phase portrait in Poincarè section (a) and time series (b) for three 
ring oscillators (1) demonstarting torus occuring from RW-solution via 
Neimark-Sacker bifurcation. ). β1 = 0.5, β2 = β3 = 0.1, n = 3, kS0 = 1, kS1 = 
0.01, η = 2, κ = 15, α=2777, Q=0.055. 

 
Fig. 5. Phase portrait in Poincarè section (a) and time series (b) for three 
ring oscillators (1) demonstarting torus occuring via saddle-node 
difurcation. β1 = 0.5, β2 = β3 = 0.1, n = 3, kS0 = 1, kS1 = 0.01, η = 2, κ = 15, 
α=2777, Q=0.055 

Let us consider a features of coexisting attractors. In 
Fig.4 phase portrait in Poincarè section by hypersurface C1=5 
and time series of the torus which is born as a result of 
supercritical Neimark-Sacker bifurcation are presented. The 
phase portrait in Poincarè section looks like smooth 
continuous invariant curve. Time series are shifted by one 
third of the period relative to the next. 

In Fig. 5 phase portrait in Poincarè section by 
hypersurface C1=5 and time series of the torus which is born 
as a result of saddle-node bifurcation are presented. The 
phase portrait in Poincarè section has more complex form, 
invariant curve has additional loop, but it still smooth and 
continuous. Time series are not shifted by one third of the 
period relative to the next, the phases differences between 
oscillators alternate being almost zero for two oscillators 
during some intervals of time. 

B. Long transient dynamics 

In recent paper [2] suggested that critical organization in 
a vicinity of a saddle-node bifurcation which is associated 
with formation so called saddle‐node “ghost” enables 
transient memory of receptor. Formation of saddle-node 
"ghost" and such memory corresponds to the long transient 
dynamics near saddle-node bifurcation point. We would like 
to check the opportunity to observe saddle-node "ghost" in 
the case of occurrence torus bistability. We fix parameters 
near critical point, Q=0.0501, for this parameter there is only 
one torus, born via supercritical Neimark-Sacker bifurcation. 
But we take initial conditions for calculation near torus, 
corresponding to saddle-node bifurcation, the same as it used 
for Fig.3c, and examine attractors after different transient 
processes. In Fig.6a two phase portraits are shown. Black 
portrait corresponds to stable invariant curve, which we can 
reach after 1200 periods of transient oscillations. If we 
exclude the initial part of the transient time, for instance 100 
periods, we can observe movement of the phase point on the 
surface of another torus, which is not born yet. If we change 
our parameter and fix it not so close to critical point, then it 
is enough 400 periods to reach invariant curve. In Fig.6b 
example of such phase portraits is presented. Thus, we 
observed long transient process corresponding to saddle-
node "ghost" on the example of two-torus, which is 
disappear when we go far from critical point. 

 

Fig. 6. Phase portraits in Poincarè section for three ring oscillators (1) 
demonstarting longtransient dynamics. β1 = 0.5, β2 = β3 = 0.1, n = 3, kS0 = 1, 
kS1 = 0.01, η = 2, κ = 15, α=2777. a) Q=0.0501; b) Q=0.049. Black color is 
phase portrait without 1200 periods of transient process, blue color is phase 
portrait without 100 periods of transient process. 
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