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Abstract — We present a study of two minimal ensembles of 
oscillators of principally different types. The first ensemble 
describes the dynamics of two coupled classical Lorenz system. 
We demonstrate that it can generate robust chaotic dynamics 
associated with pseodohyperbolic attractors by Turaev-
Shilnikov. The second ensemble describes dynamics of two 
coupled generators of quasiperiodic oscillations. It exhibits 
non-robust chaotic dynamics associated with quasiattractors of 
Afraimovich-Shilnikov type. Hyperchaotic dynamics are 
shown for both types of ensembles. Characteristic structures of 
parameter planes are demonstrated. 
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I. INTRODUCTION 

The dynamics of ensembles of interacting oscillators is 
very rich and diverse. Interaction in ensembles initiates 
various phenomena such as: synchronization [1], clustering 
[2], chimeras [3], etc. To observe the phenomena of chimeras 
and clustering, the minimal ensemble should consist of three 
oscillators so that they can form groups. An increase in the 
size of the ensemble can lead to more complex dynamics and 
the formation of new phenomena. Another way to 
complicate dynamics is complication of the dynamics of the 
base element. In this case, the variety of dynamics is usually 
limited by the features of the base model. However, under 
certain conditions, even in minimal ensembles consisting of 
two elements, new types of regimes may arise. To implement 
chaotic behavior, the minimum dimension of the phase space 
of a dynamical system must be equal to three. In this case, 
the system is characterized by three Lyapunov exponents: 
one positive, one zero and one negative. In the interaction of 
two such oscillators, from the point of view of the phase 
space dimension, new possibilities arise, for example, with 
weak coupling, one can observe hyperchaos, a chaotic 
regime in which two or more Lyapunov exponents in the 
spectrum are positive. Chaos may occur with additional zero 
exponents of Lyapunov and others. 

In accordance to PQ hypothesis (pseudohyperbolic or 
quasiattractor) [4] chaotic attractors can be divided into two 
groups: pseudohyperbolic attractors and quasiattractors. 
The term "pseudohyperbolic" was introduced in [5, 6] for 
robust attractors which chaotic dynamics persist under small 
perturbations. In fact, pseudohyperbolicity is a weak version 
of hyperbolicity for which expansion along each direction in 
an expanding subspace is replaced by volume-expanding 
condition. In contrast to hyperbolic attractors 
pseudohyperbolic ones are not structurally stable. 
Nevertheless, each orbit of such attractor has positive 
Lyapunov exponent and this property remains for all close 

systems. The term quasiattractor was introduced by 
Afraimovich and Shilnikov in [7] for non-robust chaotic 
attractors. Unlike pseudohyperbolic attractors, quasiattractors 
either contain stable periodic orbit (with narrow, invisible in 
numerics, absorbing domains) or such orbits appear under 
arbitrarily small perturbations (parameter changing). For 
systems with quasiattractors, one can never be sure that 
increasing the accuracy or the computation time would not 
make the maximal Lyapunov exponent vanish. In parameter 
planes for this systems regions with chaotic dynamics 
alternate with stability windows with stable periodic orbit.  

The very important property of systems with 
pseudohyperbolic attractors is that the minimal ensemble of 
such systems interacting via weak coupling also demonstrate 
pseudohyperbolic attractors [6]. Moreover, since both 
systems demonstrate chaotic dynamics and the coupling is 
weak the resulting attractor should be robustly hyperchaotic. 
In the first part of this paper, we demonstrate this effect on 
the example of two coupled classical Lorenz systems. It is 
known that in the parameter space of this system there exist a 
quite large region corresponding to pseudohyperbolic Lorenz 
attractor [8-9]. Choosing parameters from this region, using 
diagrams of Lyapunov exponents we show that for weak 
couplings this ensemble indeed demonstrate robust 
hyperchaotic dynamics i.e. its strange attractor is a good 
candidate to be pseudohyperbolic and hyperchaotic. To the 
best of our knowledge, there are no examples of systems 
demonstrating pseudohyperbolic (but not structurally stable) 
hyperchaotic attractors. Moreover, we demonstrate for the 
minimal ensemble of Lorenz systems another interesting 
phenomenon. We show, that for some detuning parameter 
the ensemble can demonstrate hyperchaotc attractor with 
three positive Lyapunov exponents. It means that the 
dynamics in this system can become more complicate only 
due to coupling. 

In the second part of this paper we study a system of two 
dissipatively coupled generators of quasiperiodic 
oscillations. The base model is also three-dimensional [10]. 
In the autonomous case, the system demonstrates two-
frequency quasiperiodic regimes which are characterized by 
two zero Lyapunov exponents. We demonstrate, that the 
interaction of two such systems may cause to both chaotic 
and hyperchaotic oscillations with two positive Lyapunov 
exponents [11]. Moreover, we demonstrate that the observed 
chaotic regimes in this model cannot be robust. These 
regimes are associated with quasiattractors. For this model a 
scenario of the formation of hyperchaotic attractors is briefly 
described. 



II. HYPERCHAOTIC PSEUDOHYPERBOLIC ATTRACTORS: 
COUPLED LORENZ SYSTEMS 

A. Mathematicla model of coupled Lorenz systems 

Classical Lorenz system 

( ),

( ) ,

,

x y x

y x r z y

z xy bz

 
  
 







 

where x, y, and z are dynamical variables, σ, b, and r are 
parameters is one of the basic dissipative systems 
demonstrating chaotic dynamics. Strange attractors in this 
system were discovered yet in 1963 by E. Lorenz [12]. 
However, the first theories of Lorenz attractors were 
proposed much later. Among them the theory developed by 
Afraimovich-Bykov-Shiknikov [13, 14] is the most 
completed and applied. It provides a set of effectively 
verifiable conditions. If an attractor satisfies these conditions 
(this fact can be checked numerically) one can conclude that 
this attractor is indeed singular-hyperbolic and, thus, 
pseudohyperbolic. 

Afraimovich-Bykov-Shiknikov conditions for classical 
Lorenz attractor, when  

                            σ=10, b=8/3, r=28,                            (1) 

were successfully verified by Tucker in [8] where it was 
proved that this attractor is indeed singular-hyperbolic, i.e. it 
is robustly chaotic. Pseudohyperbolicity of Lorenz attractors 
implies a very important conclusion [6]. The ensemble of 
two identical weak coupled Lorenz systems with a 
pseudohyperbolic attractor also demonstrate 
pseudohyperbolic attractors. Since pseudohyperbolicity is the 
robust property, we can expect that two coupled Lorenz 
systems with not identical but close parameters should 
demonstrate pseudohyperbolic hyperchaotic attractors. In 
this section we try to demonstrate this property using charts 
of Lyapunov exponents. 

Two coupled Lorenz systems can be written as the next 
system of differential equations: 
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Here MC is a coupling strength, and Δ is detuning in the 
parameter r between oscillators. We fix parameters σ, b, r in 
accordance with (1), i.e. both uncoupled subsystems 
demonstrate pseudohyperbolic Lorenz attractor. Increasing 
of detuning Δ, lead to changing of parameter r in the second 
oscillator. But it will stay in the area of pseudohyperbolic 
chaos. 

B. Numerical Simulations 

Let us analyse dynamics of model (2) with the spectrum 
of Lyapunov exponents, which was calculated by algorithm 
presented in [15]. In the parameter plane (Δ, MC) two type of 
hyperchaos were detected: with two (blue color) and three 
(red color) positive Lyapunov exponents. 

 
Fig. 1. Chart of Lyqapunov exponents for coupled Lorenz systems (1). 
σ=10, r=28, b=8/3. 

The theory of Turaev and Shilnikov [6] works at small 
coupling strength MC and detuning parameter Δ. For such 
parameter we observe hyperchaotic attractors with two 
positive Lyapunov exponents. The absence of stability 
windows inside the corresponding  regions confirm 
hypothesis that these attractors can be pseudohyperbolic.  

Increasing strength of coupling MC, one can observe 
another type of hyperchaotic attractors with three positive 
Lyapunov exponents. As in the previous case, there are no 
stability widows in the corresponding region of Lyapunov 
diagram. Since Turaev, Shilnikov theory works only for 
small couplings we can only assume that this hyperchaos can 
be also pseudohyperbolic. The graph of four maximal 
exponents presented in Fig. 2 shows that these exponents 
smoothly depend on parameter MC which confirms our 
assumption. 

 

Fig. 2. Plots of the four largest Lyapunov exponents for Lorenz systems 
(1). σ=10, r=28, b=8/3, Δ=1. 

In future papers, we plan to verify pseudohyperbolicity of 
the observed hyperchaotic attractors employing the method 
of verification of continuity for directions-contracting and 
volume-expanding subspaces proposed in [9] and method 
based on the computation of angles between these subspaces 
proposed in [16, 17]. 

III. HYPERCHAOTIC QUASIATTRACTORS: COUPLED 

QUASIPERIODIC GENERATORS 

A. Mathematical model 

As an example of model with quasiattractor we will 
consider generator of quasiperiodic oscillations [10]. This 
generator can demonstrate autonomous quasiperiodic 



oscillation. Two coupled generators will be written in the 
next form:  
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where x1, y1, z1, x2, y2, z2 are dynamical variables, λ is 
parameter of excitation, ω0, μ are parameters, responded for 
base incommeasure frequencies of each oscillator, Δ is 
frequency detuning between oscillators, MC is coupling 
strength. In [11] various types of dynamical behavior were 
demonstrated, including chaos, chaos with additional zero 
Lyapunov exponent in the spectrum and hyperchaos. Let us 
consider in detail features of hyperchaos. 

B. Numerical simulations 

As a main tool for analysis we will use spectrum of 
Lyapunov exponents. In Fig.3 a fragment of chart of 
dynamical regimes based on the spectrum Lyapunov 
exponents demonstrating chaotic behavior is shown. Red 
and yellow colors correspond to periodic and quasiperiodic 
dynamics. Domains of chaos and hyperchaos are marked 
with white and grey colors, accordingly. Quasi-periodic 
oscillation are base for development of chaos, and also for 
periodic oscillations occurring as a result of 
synchronization. Structure of the chart is complex in domain 
of quasiperiodicity there are different tongues of periodicity. 
Intersection of tongues and different bifurcations inside 
them lead to chaos formation. Such complex structure of 
parameter plane is character for quasiattractors, which are 
sensitive for changing parameters. 

 

Fig. 3. Chart of dynamical regimes for coupled quasiperiodic generators 
(3) in the domain of chaos. λ=-1.0, β=1/18, b=1, ε=4, k=0.02. 

For further analysis we fixed coupling strength MC=1.57, 
in corresponding with line l1 in Fig.3, and varied frequency 
detuning. In Fig.4a plots of the fours largest Lyapunov 
exponents on the frequency detuning is presented. Intervals 
of hyperchaos were denoted with grey color. Figure 4b 
represents zoomed fragment of plot, where weak hyperchaos 
is shown. 

In Fig.4a one can distinguish two big intervals of 
hyperchaos. Hyperchaotic attractors for different domains 
can have various structure. Let us consider different chaotic 
attractors with phase portraits in Poincarè section, which are 
presented in Fig.5. As Poincarè cross-section we use 
hyperplane y1=0. 

 
Fig. 4. Plots of the four largest Lyapunov exponents for coupled 
quasiperiodic generators (3). λ=-1.0, β=1/18, b=1, ε=4, k=0.02, MC=1.57. 

 

Fig. 5. Phase portraits in Poincarè section by hypersurface y1=0 for 
coupled quasiperiodic generators (3). λ=-1.0, β=1/18, b=1, ε=4, k=0.02, 
MC=1.57; a) Δ=1.8; b) Δ=2.2; c) Δ=2.141; d) Δ=2.1414; e) Δ=2.1411. 

Chaotic attractors in Fig.5a-5c correspond to hyperchaos. 
For Δ=1.88 (domain I) the two largest Lyapunov exponents 
equal Λ1=0.114, Λ2=0.0044 (Fig.5a). For another domain 
(II) of hyperchaos, Δ=2.2 values of Lyapunov exponent are 
smaller and equal Λ1= 0.07, Λ2= 0.032 (Fig. 5b). These 



attractors are correspond to destruction of two-frequency 
torus. But inside area of hyperchaos there is weak 
hyperchaos, which characterized by smaller values of 
positive Lyapunov exponents. In Fig.5c example of weak 
hyperchaotic attractor is presented. Two largest Lyapunov 
exponents of this attractor equal Λ1= 0.02, Λ2= 0.0026. In 
the area of weak hyperchaos it is possible to observe chaos, 
occuried via secondary Neimark-Sacker bifurcation. In Fig. 
6d example of limit cycle in Poincarè section is shown. In 
Fig. 5e chaos occurring on the base of this cycle is 
presented. In zoomed fragment of attractor (Fig.5f) the 
structure of the cycle persists. 
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