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1. Introduction

In this paper we suggest a map, i.e., a discrete time dynamical system capable of recovering
the dynamics of systems given by ODEs. The map is built as an artificial neural network that
encodes the modeled system. Using neural networks for dynamical systems reconstruction is
a long-standing problem. But typically networks are used to predict dynamics when governing
equations are unknown and only time series are available [10, 17–19]. We assume that ODEs
are known and create their neural network model. The structure of the network is the same for
all cases, while network weights are trained to fit the modeled dynamical system. To prepare
training datasets, we do not use system time series. Instead we feed the network and the modeled
system by random time series sampled from normal distributions and update network weights
comparing the outputs. Parameter variations are taken into account so that the network captures
bifurcation scenarios of the modeled system.

The motivations for this study are the following. We want to develop a method of training
an artificial neural network that can operate as a discrete time system and can reproduce the
behavior of a wide variety of dynamical systems. We consider a perceptron with one hidden
layer and sigmoidal activation. Also, such a network is said to consist of two dense layers. Many
contemporary investigations deal with deep networks whose number of layers is much higher
than two and whose neuron interconnections are much more complicated. We prefer a classical
architecture because of a solid mathematical background behind it, that is, the universal approxi-
mation theorem [6]. According to this theorem, the network considered is the simplest universal
approximator, i.e., it is able to reproduce any function of multiple variables on a compact set.
Such a simple universal model can be interesting for theoretical studies. Theoretical analysis
of a dynamical system often requires developing highly specialized mathematical approaches
unique for the system. Considering a universal model that covers a wide range of systems,
one can extend theoretical results for this range of systems without needing always to recreate
a special mathematical approach.

From the practical point of view the development of methods for creating a universal neural
network that can model dynamics can be considered as an alternative to the existing numerical
methods for solving dynamical ODEs. Although a large variety of well-established and effective
numerical methods is available for computer simulation of dynamics, these methods are basi-
cally developed for single-thread computation. But the recent trend in computational hardware
development has been to increase the number of computational cores instead of increasing the
single-core speed. In particular, many hardwares are known today specialized for implementing
artificial neural networks. In this situation it seems to be very important to develop new numeri-
cal approaches well fitted to a powerful contemporary hardware. Our model operates as a neural
network that can be run either using various network software systems available today, such as
TensorFlow [13] and PyTorch [30], or it can be uploaded to a dedicated computer chip called AI
accelerator (AI stands for artificial intelligence) [20, 21].

2. Mathematical background:
the universal approximation theorem

The problem of a universal construct for approximation of functions with many variables
has a long history. We first mention the Weierstrass theorem [11], which states that any con-
tinuous function over a closed interval on the real axis can be expressed in that interval as an
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absolutely and uniformly convergent series of polynomials. In 1900 David Hilbert outlined in
the International Congress of Mathematicians in Paris 23 major mathematical problems for the
coming new century. His 13th problem is whether solutions to a 7th-degree polynomial equation
can be written as a composition of finitely many two-variable functions. Hilbert believed they
could not. In 1956 and 1957, Kolmogorov and Arnold proved that each continuous function
of N variables, including the case in which N = 7, can be written as a composition of continuous
functions of two variables [1–3]. This is called the Kolmogorov –Arnold representation theorem.

The interest in the study of the virtues of multilayer perceptrons as devices for the represen-
tation of arbitrary continuous functions was perhaps first put into focus by Hecht-Nielsen [7]. In
the context of traditional multilayer perceptrons, it was Cybenko who demonstrated rigorously
for the first time that a single hidden layer is sufficient to uniformly approximate any continuous
function with support in a unit hypercube [6]. In 1989, two other papers were published indepen-
dently on multilayer perceptrons as universal approximators [5, 8]. For subsequent contributions
to the approximation problem, see [9]. A review on this topic can also be found in [10]

To sum up, the universal approximation theorem states that a feed-forward network with
a single hidden layer containing a finite number of neurons can approximate continuous functions
on compact subsets of RN , under mild assumptions on the activation function. The theorem thus
states that simple neural networks can represent a wide variety of interesting functions when given
appropriate parameters.

3. The network and training details

Assume that we have an ODE
u̇ = f(u, p), (3.1)

where u ∈ RNu is a vector of Nu dynamical variables and p ∈ RNp is a vector of Np parameters.
We consider one of the simplest feed-forward networks, a perceptron with one hidden layer,

or using more contemporary terms, a network with two dense layers. Formally the network can
be represented as a function that maps vectors u ∈ RNu to vectors d ∈ RNu ,

d = F (u, p, w), (3.2)

where w is a vector of network weights. Our purpose is to tune w in such a way that

u(t+Δt) = u(t) + d(t), (3.3)

where u(t) is a solution to ODE (3.1) and Δt is a time step. The size of the time step is defined
before training the network. We take Δt = 0.01.

Consider a semiimplicit numerical scheme of ODE solution:

u(t+Δt) = u(t) +
Δt

2
{f [u(t)] + f [u(t+Δt)]}. (3.4)

Compute the difference between (3.3) and (3.4):

e = d(t)− Δt

2
{f [u(t)] + f [u(t+Δt)]}, (3.5)

where e is the approximation error. Substituting u(t + Δt) as u(t) + d(t) from Eq. (3.3) and
omitting t, we obtain

e = d− Δt

2
[f(u) + f(u+ d)]. (3.6)
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The network approximation (3.2), (3.3) works well if the approximation error tends to zero,
e→ 0, for any u and p from the domain of interest.

Before training we need to define the localization areas for u and p. This is done empirically
via testing various numerical solutions of Eq. (3.1). We define in this way a mean value μu
and a standard deviation su of u and the corresponding μp and sp by varying parameters p.
The training occurs on a random u and p sampled from normal distribution defined by given
mean values μu, μp and standard deviations su and sp. Since we use a pseudo-random number
generator to produce a data set, its size is limited only by a period of the generator that is very
large.

Let us now discuss the structure of the network denoted above as F (u, p, w). The network
includes linear and nonlinear data transformations. The linear one is done via multiplication
of data vectors by a matrix of neuron weights. For neural networks the usual order of vector-
matrix manipulation is the reversed: Typically we multiply a matrix by a vector-column and in
the neural network context a vector-row is multiplied by a matrix. This is done because in the
course of training a batch of vectors is processed in parallel. A rectangular data matrix with the
vectors stowed in rows is multiplied by a matrix of weights. Thus, we assume that u and p are
vector rows of dimension Nu and Np, respectively.

The training data vectors u and p are sampled from a normal distribution and elements of
u and p can have different scales. Thus, the first transformation of the network inputs u and p
is a nontrainable normalization layer that rescales inputs to a standard normal distribution:

Norm(x) = (x− μx)/sx, (3.7)

Denorm(x) = xsx + μx. (3.8)

Here x, μx and sx are vectors rows and operations are performed elementwise. Also, we define
here the layer performing backward operation Denorm(). It will be done at the very end of the
network to fit the values to an appropriate range. It might seem that the layers (3.7) and (3.8)
are superfluous — one can expect that the network is able to fit these scales itself in the course
of training. But in fact this is not the case. All network training methods are developed in the
assumption that both inputs and outputs do not deviate much from a standard range. So the
training is efficient if we know in advance what the ranges of the inputs and the outputs are and
rescale them appropriately.

After normalization we concatenate two resulting row vectors into one vector:

Concat(x, y) = (x, y). (3.9)

Here x and y are vectors of Nx and Ny elements, respectively, and (x, y) is a row vector of
Nx +Ny elements.

The next step is a dense layer. This is merely an affine transformation:

Dense(x,N) = xWx,N + bx,N . (3.10)

Here Wx,N is a rectangular matrix whose number of rows equals the number of columns of x and
the number of columns of Wx,N is N , bx,N is a vector row with N elements.

After that a nonlinear transformation is applied that is called activation:

Activ(x) = σ(x). (3.11)

Here σ() is a scalar function of a scalar argument, and if a vector is passed to it, the element-wise
operation is assumed.
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Subsequent transformations are done using already defined operators so that the whole
network d = F (u, p, w) can be described as follows:

z = Concat(Norm(u),Norm(p)), (3.12)

h = Activ(Dense(z,Nh)), (3.13)

g = Dense(h,Nu), (3.14)

d = ΔtDenorm(g). (3.15)

The variable w in F (u, p, w) represents a set of trainable parameters of the networks. As follows
from the equations above,

w = {Wz,Nh
, bz,Nh

,Wh,Nu , bh,Nu} . (3.16)

At the very beginning the network parameters w are initialized at random. Then the training
process is performed as follows. We generate an input batch {U,P} of Nbatch random u and p
sampled from a normal distribution. Here U and P are matrices with Nbatch rows, and their
number of columns is Nu and Np, respectively. This batch is fed to the network (3.12)–(3.15)
and the matrix D with Nbatch rows and Nu columns is obtained. Then the input matrix U and
the output matrix D are substituted into (3.6) to compute an error matrix E of Nbatch rows and
Nu columns. Finally, a mean squared error (MSE) is computed for the elements of E as

� =
1

NbatchNu

Nbatch∑
i=1

Nu∑
j=1

e2ij . (3.17)

This � is the loss function for our training. To update the network parameters, a gradient of �
is computed with respect to each of the network parameters gathered in w, see (3.16), and then
it is used in a gradient descent step that computes corrections to the network parameters with
respect to the minimization of �. The simplest version of the gradient descent step reads

w ← w − γ∇w�, (3.18)

where the step size scale γ is a small parameter controlling the convergence.
A training iteration that starts from a random batch generation and ends after updating

network parameters is repeated tepoch times. This is considered as an epoch. Notice that usually
an epoch has a bit different meaning. Typically, when a large unaltered data set is used, the data
set cannot be shown to the network at once due to the lack of computer memory. In this case
the whole data set is split into batches (they are also called minibatches) and they are fed one
by one. The parameter updates are computed for each batch. The optimization method applied
not to the whole data set at once but only to its batches is called stochastic gradient descent,
and the epoch ends when each batch has been shown to the network. In our case the batches
are always generated at random so that dividing training process into epochs is required only to
interrupt the training and to compute metrics to see the progress of the network performance.

When tepoch training iterations are done and the epoch ends, we evaluate network perfor-
mance making tvalid validation iterations. They include creation and feeding the network with
the random batches {U,P} (again of size Nbatch), computation performance metrics, and finally
averaging them over the validation steps tvalid. Unlike the training iterations, no network pa-
rameters updates are done. Two metrics are considered: the loss function MSE (3.17) and the
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mean relative norm error (MRNE) that is defined as follows:

m =
1

Nbatch

Nbatch∑
i=1

⎛⎝Nu∑
j=1

|eij |/
Nu∑
j=1

|uij |
⎞⎠, (3.19)

where eij are, as above, the elements of the error matrix E and uij are the elements of the
network input batch U . To visualize the training routine, we plot the performance metrics vs
the number of epochs passed. This is called learning curves, see Figs. 1, 4, and 8 below.

For all computations we set

Nbatch = 10000, tepoch = 100, tvalid = 3. (3.20)

For actual computations instead of the simplest one (3.18) we use a more sophisticated
version of the gradient descent method called Adam. The difference is that the step size scale γ
is not a constant, but is tuned according to the accumulated gradients on the previous steps [12].
This method has a meta-parameter learning rate α that controls the overall scale of the computed
step size. We decrease it in the course of the computations according to the inverse time decay
rule:

α =
0.1

1 + 0.96t/(30tepoch)
, (3.21)

where t is the gradient descent step, and tepoch is the number of steps comprising one epoch. The
particular numerical values of the coefficients in this formula are chosen empirically to provide
the fastest convergence.

As an activation layer Activ() in Eq. (3.13) we apply the sigmoidal function

σ(x) =
1

1 + e−x
. (3.22)

We will train the neural network models to achieve the mean relative error MRNE at
level 10−5.

The transformation that is done by the network under consideration, (3.2), (3.12)–(3.15),
can be represented as a map. The normalization operator in Eq. (3.12) can be taken into account
inside the dense layer in (3.13) by an appropriate rescaling and shift of the elements of Wz,Nh

and bx,Nh
. Similarly, the denormalization operator in Eq. (3.15) can be merged with the dense

layer in (3.14). Also, instead of concatenating the normalized vectors u and p we split the
matrix Wz,Nh

into two blocks corresponding to u and p, respectively. As a result, we obtain the
following map that models solutions to Eq. (3.1):

un+1 = un + σ(unA0 + pB0 + a0)A1 + a1, (3.23)

where A0 is a matrix with Nu rows and Nh columns, B0 has Np rows and Nh columns, A1

is a matrix with Nh rows and Nu columns. The vector row a0 has Nh elements and a1 has
Nu elements.

Equation (3.23) is a universal model of a solution to ODE (3.1). A particular system is
selected by choosing an appropriate size Nh of the hidden layer and by numerical values of the
elements of matrices A0, B0, A1 and vectors a0 and a1.

For Eq. (3.23) we can find the variational equation suitable for applying the Lyapunov
analysis to this system, in particular, for computing Lyapunov exponents. Differentiating the
elements of un+1 by the elements un, one obtains the Jacobian matrix:

Jn = I +A0HnA1, (3.24)
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where I is the identity matrix and Hn is a diagonal square matrix Nh by Nh:

Hn = diag(hn(1− hn)) (3.25)

and hn is a row vector computed as

hn = σ(unA0 + pB0 + a0). (3.26)

In other words, it is computed according to Eqs. (3.12) and (3.13) when un and p corresponding
to the current trajectory point are substituted there.

Thus, the variational equation for the system (3.23) reads

δun+1 = (I +A0HnA1)δun. (3.27)

This variational equation can be used to compute Lyapunov exponents. For this purpose
we apply the standard algorithm [15, 16]: iterate the main system (3.23) simultaneously with
the required number of copies of the variational equation (3.27) with periodic orthogonalization
and normalization of the set of vectors δun. Accumulated and averaged in time logarithms of
the norms of variational vectors converge to the Lyapunov exponents.

Since the training and running of the neural network is usually done in a multithread com-
putation environment, the preferable way of finding the exponents is to iterate very many tra-
jectories simultaneously for not very large time cuts and then to average the resulting exponents
over the trajectories.

All the computations including training and running are performed using TensorFlow [13]
and CUDA [14] software.

4. Models

4.1. Lorenz system

First we consider the Lorenz system [22–24]:

ẋ = σ(y − x),
ẏ = x(r − z)− y,
ż = xy − bz.

(4.1)

To train this model we choose the vectors of mean μu and standard deviation su as follows:

μu = (0, 0, 0), su = (10, 10, 20),

μp = (0, 0, 0), sp = (5, 20, 2),

μg = (0, 0, 0), sg = (70, 280, 110).

(4.2)

These vectors are used in Eq. (3.12), see also Eq. (3.7).
The vectors μg and sg are computed as mean and standard deviation of elements of f(u, p)

that is the right hand side of Eq. (4.1) when u and p are sampled from a normal distribution
with mean and standard deviations μu, su, μp and sp. In this case the network output d, see

Eq. (3.15), will approximately have the range of Δt
2
[f(u) + f(u+ d)], see Eqs. (3.4) and (3.5).
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One more parameter that we need to define is Nh, the size of the hidden layer, see (3.13).
We consider different values to check which one is preferred. Figure 1 shows the learning curves
for the Lorenz system. As explained above, these curves represent metrics MSE (3.17), panel (a),
and MRNE (3.19), panel (b), computed after each epoch of training (remember that one epoch
includes updating the network parameters w (3.16) on Nbatch × tepoch (3.20) random samples).
Three cases are shown corresponding to Nh = 50, 100 and 200. We see that all the curves decay,
which means that the performance of the network improves. The fastest decay is observed for
Nh = 200. In what follows we will consider the network with Nh = 200. In the course of the
training after each epoch we compare the attained MRNE level with the previously smallest one.
And if the new one is smaller, we save the corresponding network parameters w, see Eq. (3.16).
After 20000 epochs we were able to find a network whose MRNE is approximately 3 × 10−5.
We use this metric as a criterion of the performance because it is normalized by the scale of
dynamical variables so that we can compare the performance of different systems. Since MRNE
is already sufficiently small, we did not consider larger values of Nh.

Fig. 1. Learning curves for the Lorenz network model corresponding to ODEs (4.1). The curves are
computed at validation steps, i.e., for inputs that were not used for updating the network parameters.
Panel (a) represents MSE, Eq. (3.17). Panel (b) shows MRNE, Eq. (3.19). Different curves correspond
to different Nh.

The training result is shown in Figs. 2 and 3. Figure 2 demonstrates the Lorenz attractor
computed for the standard set of parameters σ = 10, r = 28, b = 8/3 using the fourth-order
Runge –Kutta method (a) and the network model (3.23) (b). Observe very high coincidence of
two plots.

Neural networks architecture is very good suited for parallel computations. So doing com-
putations with the network model, we employ it considering multiple trajectories at once: to plot
Fig. 2a via the Runge –Kutta method, we compute 10000 steps with the time interval Δt = 0.01,
while in Fig. 2b we compute 100 trajectories at once, each of the length 100 steps Δt = 0.01.

Figure 3 shows Fourier spectra computed for x at the parameters σ = 10, r = 28, b = 8/3,
panels (a), (b), and σ = 16, r = 45.92, b = 4, panels (c), (d). The left panels (a) and (c) are
computed for the Runge –Kutta data and the right ones are obtained for the network model.
The spectra coincide very well, which indicates that the obtained network (3.23) models the
Lorenz dynamics very well.

Now compute Lyapunov exponents using the standard algorithm [15, 16]. Using the Runge –
Kutta method at σ = 10, r = 28, b = 8/3 we obtain the values of λi in Eq. (4.3). Lyapunov
exponents λ̃i computed for the network model (3.23) and the corresponding variational equa-
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(a) (b)

Fig. 2. Lorenz attractor computed (a) as a numerical solution of Eqs. (4.1) using the forth-order
Runge – Kutta method and (b) as iteration of the network model (3.23). Parameters are σ = 10, r = 28,
b = 8/3.

(a) (b)

(c) (d)

Fig. 3. Fourier spectra of the Lorenz attractor. Data series for panels (a) and (c) are computed numer-
ically using the fourth-order Runge – Kutta method, and data for the panels (b) and (d) are obtained
after iterations of the network model (3.23). Parameters for the panels (a) and (b) are σ = 10, r = 28,
b = 8/3, and panels (c) and (d) are obtained with σ = 16, r = 45.92, b = 4.

tion (3.27) are contained in Eq. (4.4). Observe the very good coincidence. Notice that λ2 is
expected to be zero since it describes marginally stable perturbations along trajectories. How-
ever, actual values in computations are never exactly zero. Their closeness to zero indicates the
quality of the computation. In our case, both λ2 and λ̃2 are very small:

λ1 = 0.906, λ2 = 8.26× 10−6, λ3 = −14.6, (4.3)

λ̃1 = 0.905, λ̃2 = 1.26× 10−5, λ̃3 = −14.6. (4.4)

Similarly, the Lyapunov exponents are computed for the parameters σ = 16, r = 45.92,
b = 4. Observe again the very high similarity of λi with network model exponents λ̃2:

λ1 = 1.50, λ2 = −1.89× 10−5, λ3 = −22.5, (4.5)

λ̃1 = 1.49, λ̃2 = 4.34× 10−5, λ̃3 = −22.7. (4.6)
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4.2. Rössler system

Another system that we consider is the Rössler system [24–26]:

ẋ = −y − z,
ẏ = x+ ay,

ż = b+ z(x− c).
(4.7)

For this system we choose the following μu,p and su,p and compute the corresponding μg and sg:

μu = (0, 0, 0), su = (10, 10, 10),

μp = (0, 0, 0), sp = (10, 10, 10),

μg = (0, 0, 0), sg = (14, 101, 142).

(4.8)

Fig. 4. Learning curves for the Rössler network model corresponding to ODEs (4.7).

Figure 4 demonstrates the learning curves for the Rössler system, i.e., decay of the met-
rics MSE, panel (a) and MRNE, panel (b), see Eqs. (3.17) and (3.19), respectively, in the
course of training. We observe that the training now goes much faster than for the Lorenz sys-
tem, see Fig. 1. Inspecting the learning curves, we can conclude that the network models with
Nh = 100 and 200 do not differ much. So, unlike the Lorenz system, we will consider the network
model for the Rössler system with Nh = 100. After 20000 epochs of the training we obtained
the model with the smallest MRNE equal to approximately 1.0× 10−5.

Figure 5 demonstrates a chaotic Rössler attractor and the corresponding Fourier spectra
computed for ODEs (4.7) (left column) and for the trained network model (right column). Nu-
merical solutions of ODEs here and below are obtained using the fourth-order Runge –Kutta
method. A very high similarity of the graphs indicates the high quality of approximation of the
network model. Another example of dynamics is given in Fig. 6. Here the parameters correspond
to the period 2 oscillations. The limit cycles in Fig. 6a and c look almost identical. The spectrum
for the network model in Fig. 6d also repeats the spectrum in Fig. 6b in location and relative
heights of harmonics. The difference between these two spectra is in small fluctuations. Since
the regime of the system considered is periodic, the fluctuations are mere artifacts related, in
particular, to the computation method. The methods of computations are different and so are
the fluctuations.

To demonstrate that the trained network model reproduces the dynamics of the modeled
ODEs in a wide range of parameters, in Fig. 7 we show a bifurcation diagram for the Rössler

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2021, 17(1), 5–21
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(a)

(b)

(c)

(d)

Fig. 5. Rössler chaotic attractor at a = 0.15, b = 0.2, and c = 10, panels (a) and (c) and the corresponding
Fourier spectra, panels (b) and (d). Panels (a) and (b): numerical solution of ODEs (4.7). Panels (c)
and (d): iterations of a trained network model.

(a)

(b)

(c)

(d)

Fig. 6. Period 2 oscillations of the Rössler system at a = 0.1, b = 0.1, and c = 6. The limit cycle (a) and
the Fourier spectrum (b) are computed for ODEs and the corresponding panels (c) and (d) are obtained
for the network model.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2021, 17(1), 5–21



16 P.V.Kuptsov, A.V.Kuptsova, N.V. Stankevich

(a)

(b)

Fig. 7. Bifurcation diagrams for the Rössler system at a = 0.1 and b = 0.1. Panel (a) corresponds
to a numerical solution of ODEs (4.7) and panel (b) is computed for the network model. Bifurcation
diagrams are obtained as y values at Poincaré sections at x = 0. The sections are computed for linearly
interpolated time series.

system. Parameters a and b are fixed and c is varying. For each c we compute a trajectory and
then find its Poincaré section at x = 0. Absent values of variables between the time discretization
points are obtained via linear interpolation. The diagram obtained for the numerical solution
of (4.7), see Fig. 7a, is reproduced very well by the network model, see Fig. 7b. Notice, however,
that the bifurcation points for the network model are slightly shifted to the right.

Let us now compare Lyapunov exponents by applying the standard algorithm for ODEs (4.7)
and for the corresponding network model. We demonstrate two cases. For parameters a = 0.15,
b = 0.2, c = 10 the Lyapunov exponents λi for ODEs are shown in Eq. (4.9). For comparison
the exponents λ̃i for the corresponding network model at the same parameters are shown in
Eq. (4.10). The values coincide very well. Since the system considered is autonomous, the value
of λ2 must be zero. Actually computed values are indeed very close to zero.

λ1 = 0.0886, λ2 = −8.66 × 10−7, λ3 = −9.80, (4.9)

λ̃1 = 0.0839, λ̃2 = 2.70 × 10−5, λ̃3 = −9.64. (4.10)

One more example is considered at a = 0.1, b = 0.1, c = 13, for which the Rössler system also
has a chaotic attractor. From Eqs. (4.11) and (4.12) we again observe that the exponents for the
network model λ̃i are close to those obtained for the numerical solution of ODEs λi.

λ1 = 0.0116, λ2 = 1.87 × 10−5, λ3 = −12.8, (4.11)

λ̃1 = 0.0189, λ̃2 = 8.53 × 10−5, λ̃3 = −12.8. (4.12)
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However, we must notice that the correspondence of the Lyapunov exponents for the Rössler
system is not as good as for the Lorenz system, see Eqs. (4.3)–(4.6). We attribute this to the
parameter mismatch observed in the bifurcation diagrams.

4.3. Hindmarch – Rose neuron

Now we consider the Hindmarsh –Rose model of neuronal activity [27, 28]:

ẋ = y − ax3 + bx2 − z + I,

ẏ = c− dx2 − y,
ż = r(s(x− α)− z).

(4.13)

On the whole this system has eight parameters. However, the system is often considered when
six of them have standard values: a = 1.0, b = 3.0, c = 1.0, d = 5.0, s = 4.0, α = −1.6.
Parameters I and r are varied.

The Hindmarch –Rose model (4.13) is a simplified model for biological neurons presenting
bursting oscillations. In this regime, bursts of fast spikes are followed by quiescent periods.
Typical values of parameters where the bursts are observed are I = 2.7 and r = 0.003. Thus, we
select the normalization to be close to these values:

μu = (0,−5, 2.5), su = (0.8, 2.5, 0.5),

μp = (0.012, 2.7), sp = (0.024, 0.3),

μg = (−2.9, 2.8, 0.047), sg = (4.2, 5.2, 0.13).

(4.14)

Learning curves for the network model of the system (4.13) are shown in Fig. 8. These
curves show that, unlike the two previous cases, the metrics MSE (3.17) and MRNE (3.19),
panels (a) and (b), respectively, decay much faster in the course of training: it takes only 7000
epochs of training for MSE at Nh = 100 to reach a level of about 10−10. The model at Nh = 50
also demonstrates a very good convergence, however, the model at Nh = 25 behaves much worse.
Thus, we will consider a model with Nh = 50.

Fig. 8. Learning curves for the Hindmarch – Rose network model corresponding to ODEs (4.13).

Figures 9a and 9b demonstrate typical solutions of the Hindmarch –Rose model (4.13):
panel (a) demonstrates periodical bursts of spikes, and in panel (b) we see chaotic spikes. The
system contains fast and slow variables, i.e., it is stiff. To solve it numerically, the method
LSODA is used [29].
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(a) (b)

(c) (d)

Fig. 9. Time series of x(t) obtained as numerical solution of ODEs (4.13), panels (a) and (b), and
corresponding iterations of the neural network model, panels (c) and (d). Parameters are r = 0.003,
I = 2.7 for panels (a) and (d), and r = 0.013, I = 2.9 in panels (b) and (d).

Figures 9c and 9d show the corresponding time series obtained from the neural network
model. The behavior of the network model is very similar, but the close inspection reveals
that in panel (c) there are seven spikes in each burst, while the “original” curve contains only
six of them. This means that, although the model demonstrates a neural dynamics as in the
original ODEs, its parameters do not coincide exactly. The chaotic regimes in panels (b) and (d)
obviously represent the same regime.

The bifurcation diagrams in Fig. 10a and 10b provide a more detailed comparison of the
neural network model with ODEs. In both panels the diagrams are computed for Poincaré
sections at x = 0 computed for linearly interpolated times series. The diagrams have similar
global structure. One can see areas of bursts in their left parts and chaotic areas to the right.
However, the detailed arrangement is different. The diagram for the neural network model looks
less regular along the parameter axis. Frequent changes of the regimes are observed.

Finally, we compare Lyapunov exponents computed for numerical solutions of ODEs (4.13)
and for iterations of the neural network model. For chaotic spikes at r = 0.013, I = 2.9, see
Fig. 9b, the Lyapunov exponents λi are given by Eq. (4.15). The corresponding exponents for
the network model λ̃i are gathered in Eq. (4.16). The exponents are pairwise close but do not
coincide:

λ1 = 8.39 × 10−3, λ2 = −1.32× 10−5, λ3 = −9.55, (4.15)

λ̃1 = 7.95 × 10−3, λ̃2 = 9.77× 10−6, λ̃3 = −9.63. (4.16)

Similar situations are obtained for other parameter values, r = 0.012, I = 2.7: the exponents λi
and λ̃i are similar, but the difference is noticeable:

λ1 = 5.41× 10−3, λ2 = 7.59 × 10−6, λ3 = −10.2, (4.17)

λ̃1 = 3.20× 10−3, λ̃2 = 3.04 × 10−5, λ̃3 = −10.3. (4.18)

We attribute this not very good coincidence of the Lyapunov exponents to the very weak chaos.
The first exponents are very small in magnitude, so that the numerical routine converges poorly
and is strongly affected by numerical errors. The parameter mismatch similar to the one observed
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(a)

(b)

Fig. 10. Bifurcation diagrams for the Rössler system at a = 0.1 and b = 0.1. Panel (a) corresponds
to a numerical solution of ODEs (4.7) and panel (b) is computed for the network model. Bifurcation
diagrams are obtained as y values at Poincaré sections at x = 0. The sections are computed for linearly
interpolated time series.

above for the Rössler system also contributes to the not very good coincidence of the Lyapunov
exponents.

Thus, we observe that the discussed neural network model for the Hindmarch –Rose system
provides good qualitative approximation of this system, however, the quantitative correspondence
is not high.

5. Conclusion

We have discussed a neural network, a perceptron with one hidden level, which can be
trained to model the behavior of various dynamical systems given by ODEs. Mathematically our
universal neural network model is a discrete time system, see (3.23). We are aware of the recent
success in using so-called deep networks. In contrast, our network is not deep. We prefer it
because there is rigorous mathematical evidence, the universal approximation theorem [6], that
the network with such architecture is able to approximate various dependencies. Another reason
to apply a classical perceptron is its simple structure. We believe that it will help to trigger
new theoretical studies of dynamical systems. From the practical point of view this simple
network can be effectively simulated using so-called AI accelerators, hardware designed to deal
with artificial neural networks. The approach developed in this paper can be considered as an
alternative numerical method for modeling a dynamical system that is able to utilize modern
parallel hard- and software.
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The universal network model was trained to reproduce the dynamics of the three systems:
the Lorenz and Rössler systems and the Hindmarch –Rose model. It was very successful for
the Lorenz system. This is confirmed by visual inspection of attractors, and by coincidence of
Fourier spectra and Lyapunov exponents. For the Rössler system the correspondence is also
high. However, a certain mismatch of bifurcation points is observed in the bifurcation diagrams
computed for the numerical solution of Rössler ODEs and for the network model.

For the Hindmarch –Rose system, good qualitative correspondence is achieved however,
quantitative characteristics are sometimes different. This system allows one to reveal the lim-
itations of the suggested approach. The Hindmarch –Rose system is stiff and also its regimes
change fast within a narrow range parameters. Probably for such cases like this system a more
subtle approach is required.
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