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Abstract. We consider the billiard system consisting of a particle mov-
ing between two walls one of which is plane and fixed and the other one
is harmonically corrugated (like in Tennyson-Lieberman-Lichtenberg sys-
tem) and oscillates harmonically. The collisions of the particle and the
wall are suggested to be elastic. We assume that the oscillation and
the corrugation amplitudes are weak so some significant simplifications
of the system are justified which results in the system of two unidirec-
tionally coupled 2D maps. The master system is the original Tennison-
Lieberman-Lichtenberg system with fixed walls and the slave system is
Ulam map parametrically driven by the master system. The variables of
the slave system are the velocity of a particle before the collision and
the time between the collisions. We calculate numerically the Jacobian
of various trajectories of the system and reveal that the regions of con-
servative (with the Jacobian very close to zero) and dissipative dynamics
coexist in the phase space of the system.

Keywords: Time-dependent billiards · Numerical research · Mixed dy-
namics.

1 Introduction

Billiard-like dynamical systems are of great interest, both from applied and fun-
damental points, since a wide variety of nonlinear phenomena is observed in
them and they are easy to research [1-4]. Usually billiards are assumed to be
conservative (i.e. without loss of energy) but also they can be dissipative [5]
(e.g. with energy loss by friction or inelastic collisions). Dissipative dynamics is
characterized by the existence of attracting invariant sets [6]. The conservative
behavior of billiards is well described by Hamiltonian systems [7]. For example,
the phase space of Tennyson-Lieberman-Lichtenberg system [8] is typical for
non-integrable two-dimensional Hamiltonian systems. It has regular trajectories
that are quasi-periodic (KAM) tori and chaotic ones that are destructed tori as
a result of the perturbations of an integrable Hamiltonian system [9].

In this paper we consider a system that consists of a particle moving be-
tween two walls one of which is plane and fixed and the other one is harmoni-
cally corrugated (like in Tennyson-Lieberman-Lichtenberg system) and oscillates
harmonically. The collisions of the particle and the wall are suggested to be elas-
tic. We assume that the oscillation and the corrugation amplitudes are weak so
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some significant simplifications of the system are justified, which results in the
system of two unidirectionally coupled 2D maps. The master system is original
Tennison-Lieberman-Lichtenberg system with fixed walls and the slave system
is Ulam map [10] parametrically driven by the master system. We calculate nu-
merically the Jacobian of various trajectories of the system and reveal that the
regions of conservative (with the Jacobian very close to zero) and dissipative
dynamics coexist in the phase space of the system.

2 Model Description

The original system consists of a particle which moves between two boundaries
and elastically collides with them. One boundary is fixed and set by the equation:

y1 = 0. (1)

The other boundary is corrugated and can oscillate harmonically. Then its equa-
tion is:

y2 = F (x, t) = b cos kx+ a coswt+ h (2)

In (2) a – the oscillation amplitude, b – the corrugation amplitude, h – the
average distance between the boundaries.

Fig. 1. Illustration of the particle movement between two boundaries. xn – the coordi-
nate of the n-th collision with the upper boundary; αn – the angle between the normal
to the bottom boundary and the velocity vector at the moment of the n-th collision vn;
vn – the particle velocity at the moment of the n-th collision with the upper boundary;
t0n – the elapsed time from the moment the particle begins to move until the moment
of the n-th collision with the upper boundary.

The model is mechanical and it is not difficult to obtain expressions for
vn+1, αn+1, xn+1, t0n+1

(Fig. 1) in the case of the weak amplitudes of the corru-
gation and the oscillation. So, these expressions form the following 4D map:
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vn+1 =
√
v2n+1x

+ v2n+1y
;

αn+1 = arctan
vn+1x

vn+1y
;

xn+1 = xn + 2h
vn+1x

vn+1y
;

t0n+1
= t0n + 2h

vn+1y
.

(3)

In (3): vn+1x = vn sin (αn + 2γ) − 2γu, vn+1y = vn cos (αn + 2γ) − 2u, u =
−aw sinwt0n , γ = −kb sin kxn. The number of the parameters can be reduced
via the following replacement: 

ϕn = kxn;

ψ = wt0n ;

Ω =
vnx,y

2hw ;

A = 2hk;

B = a
h ;

C = bk.

(4)

It results in the 4D map with four parameters:

Ωn+1 =
√
Ω2
n+1x

+Ω2
n+1y

;

αn+1 = arctan
[
Ωn+1x

Ωn+1y

]
;

ϕn+1 = ϕn +A
Ωn+1x

Ωn+1y
;

ψn+1 = ψn + 1
Ωn+1y

.

(5)

In (5): Ωn+1x = Ωn sin (αn + 2γ) − 2γu, Ωn+1y = Ωn cos (αn + 2γ) − 2u, γ =
−C sinϕn, u = −B sinψn, Ωn – the dimensionless velocity, ϕn – the dimension-
less coordinate, ψn – the dimensionless time, A — the dimensionless average
distance between the boundaries, B — the dimensionless oscillation amplitude,
C — the dimensionless corrugation amplitude.

The system (5) is of interest because the critical velocity appears in the
system with weak corrugation and oscillation of the boundary [12] and if the
initial velocity is lower than the critical velocity, then the particle has slow Fermi
acceleration, otherwise the particle has fast or classical Fermi acceleration [11].
If the particle is moving with slow Fermi acceleration, then u << Ωn and (5)
can be simplified as follows:{

αn+1 = αn − 2C sinϕn

ϕn+1 = ϕn +A tanαn+1

(6)

{
Ωn+1 = Ωn + 2B sinψn cosαn+1

ψn+1 = ψn + 1
Ωn+2B sinψn

(7)

The four-dimensional map is split into two two-dimensional ones, where (6) is
the Tennison-Lieberman-Lichtenberg map that affects the system (7) which is
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similar to Ulam map. The first map is the master system and the second one is
the slave system.

3 Jacobian of System

The Jacobian of the system (6) is identically equal to one, which means that the
system is conservative. However the Jacobian of the system (7) depends on the
variables:

J = 1− 2B

(
sin (αn − 2C sinϕn)

Ωn cos (αn − 2C sinϕn) + 2B sinψn

)2

cosψn. (8)

The Jacobian of the full system consisting of these two maps is the same.
Since the Jacobian depends on the state of the system, we should calculate
the iteration-averaged (average over the number of iterations) Jacobian along
the trajectory to find out if the regime is conservative or dissipative.

Let us fix the parameters A = 2, B = 0.03, C = 0.05 and plot the map of
the Jacobian values, on which: vertical α0 – the initial angle, horizontal ϕ0 –
the initial coordinate. The color indicates the absolute value of the Jacobian
averaged along the trajectory: orange - impossible to determine (we will discuss
why below), red - less than one, blue - equal to one, green - larger than one. The
initial velocity Ω0 is different for each figure. Initial time ψ0 = 0 is selected for
all figures.

Fig. 2. Map of the Jacobian of the system (7) with the parameters: A = 2, B =
0.03, C = 0.05 and ψ0 = 0, (a) Ω0 = 0.1; (b) Ω0 = 1.1; α0 and ϕ0 are coordinates of
the map and colors marked the value of Jacobian. (c) Phase portrait of the Tennyson-
Lieberman-Lichtenberg system with the same parameters.

The map of the Jacobian at the initial velocity Ω0 = 0.1 is shown in Fig. 2a.
The red parts are the areas of dissipative dynamics and the orange ones are the
areas of the initial conditions in which the numerical calculation of the Jacobian
gives significant errors, since the Jacobian changes significantly when the number
of iterations for its averaging is changed. If we compare the map of the Jacobian
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with the phase portrait of the system (6) we can see that the orange regions
are situated in the chaotic layer of the phase space. The chaotic trajectories are
located close to the angle π

2 . It means that the collisions of a particle with the
wall occur almost tangentially to it. Due to this reason the time between hits
becomes extremely large. This situation seems to be similar to Levy’s flight [13]
i.e. the extremely long flight without collisions. It causes that the values of the
time derivatives become large and they significantly affect the value of the local
Jacobian, thereby leading to a significant change in averaged Jacobian.

If we increase the initial velocity to Ω0 = 1.1 then most of the dissipative
regions become the conservative ones, the numerical value of the Jacobian is
equal to one with adequate accuracy (Fig. 2b). We assumed that the region is
conservative when |J | < 1 − |ϵ|. If ϵ is gradually reduced, then at one moment
all values of the average Jacobians that fell into this region stop doing this.
Also, this region is resistant to weak variation of the parameters or the initial
conditions. We calculated the largest Lyapunov exponent, which is zero with
adequate accuracy for this region, to validate that these areas are not the regions
of unstable initial conditions. All this makes it possible to confirm that the blue
parts are the areas of conservative dynamics. Note that there are small green
areas where attractors exist, but their Jacobian is also calculated incorrectly due
to Levy flights.

Fig. 3. Some trajectories of the system (7) with the parameters: A = 2, B = 0.03, C =
0.05 and ψ0 = 0; (a, b, c) Ω0 = 0.1; (d, e, f) Ω0 = 1.1; (a, d) α0 = 0.41π, ϕ0 = −0.57π;
(b, e) α0 = 0.382π, ϕ0 = −0.19π; (c, f) α0 = 0.05π, ϕ0 = 0.



6 D. Lubchenko, A. Savin

It should be noted that we also calculated values of the largest Lyapunov
exponent for such initial conditions and we found that it is positive in the orange
areas and is equal to zero with adequate accuracy in the other areas. Examples
of numerical values of the largest Lyapunov exponent are provided below.

Let us consider some of the phase trajectories of the system (7). For all
trajectories in Fig. 3 the initial time ψ0 = 0, in Fig. 3a, b, c Ω0 = 0.1, and in
Fig. 3d, e, f Ω0 = 1.1. The trajectory in Fig. 3a with ϕ0 = −0.57π and α0 = 0.41π
(chaotic region) has the largest Lyapunov exponent Λ = 1.49 (the Jacobian
is incorrect). This is a chaotic trajectory and it has not undergone significant
changes while the initial velocity increases. (Fig. 3e). The trajectory in Fig. 3b
with ϕ0 = −0.19π and α0 = 0.382π (the stability island) has the dissipative
Jacobian J = −0.61 and the largest Lyapunov exponent Λ = 6.76× 10−6 which
can be assumed equal to zero. Since there are only two Lyapunov exponents of the
system (7), the second one has to be negative because for dissipative Jacobians
the sum of the Lyapunov exponents has to be negative. In 2D maps one zero and
one negative Lyapunov exponents indicate that there is a two-frequency torus in
the phase space. The attractor changes with the increase of the initial velocity
(Fig. 3e) and this trajectory has J = 0.95 and Λ = 6.85× 10−6, which indicates
the existence of the multistability in the system. The trajectory in Fig. 3c with
ϕ0 = 0 and α0 = 0.05π (close to the elliptic point) has the J = 0.97 and
Λ = 5.29 × 10−6, which indicates the existence of the attractor. The attractor
disappears as the initial velocity increases (Fig. 3f), J = 1 − 0.2 × 10−6 and
Λ = 1.10 × 10−6. We believe that the Jacobian is equal to one with adequate
accuracy, which indicates either conservative dynamics or instability. Since the
largest Lyapunov exponent is equal to zero with adequate accuracy, it means
that blue parts are regions of the conservative dynamics. Note that a part of the
trajectory is shown in Fig. 3f. In fact, it continues to move upwards in the same
way and its velocity increases without limit.

4 Conclusion

The research shows numerically that in the Ulam-like map parametrically driven
by Tennison-Lieberman-Lichtenberg map the dissipative and the conservative
regimes coexist in the phase space. For both maps the Jacobian was found. The
Tennison-Lieberman-Lichtenberg map is conservative while the other one has
the Jacobian which depends on the system’s state and has to be either larger
than one or less than one. When we calculated the Jacobian averaged along the
trajectory for different initial conditions, it turned out that if the initial velocity
is small then the average Jacobian is less than one and if the initial velocity is
large enough then the system has to behave conservatively. This consideration
is true for trajectories that are not located in the area of chaos of the Tennison-
Lieberman-Lichtenberg system. Another problem is that for chaotic trajectories
it is impossible to calculate the Jacobian numerically.

The similar phenomenon of conservative regimes and attractors coexisting in
the phase space was studied in [14] and was called mixed dynamics there. It was
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shown that such dynamics occur if the system is time-reversible with involution.
That means that some homeomorphism in the phase space exists when there
is some transformation of the orbits into themself with the reversion of time.
However there is no such homeomorphism (at least, the evident one) in our
system, so we think that the phenomenon in our system is not exactly the same.
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