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We consider the hierarchical organization of the parameter space of four coupled phase
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different dimensions are studied. The bifurcation mechanisms of destruction of full and partial
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1. Introduction

In recent years, the problems of multifrequency
quasi-periodicity have been objects of interest
in several studies in physics and mathematics
[Anishchenko et al., 2009, 2006, 2007, 2008;
Emelianova et al., 2013; Emelianova et al., 2014;
Kuznetsov et al., 2013; Broer et al., 2008a, 2008b;
Vitolo et al., 2010; Broer et al., 2011; Banerjee
et al., 2012; Sekikawa et al., 2014; Kamiyama et al.,
2012]. Such problems are essential for different areas
of natural science. For example radio-physics, elec-
tronics, biophysics, optics, etc. In a certain sense,
this class of problems can be referred to as the
problem of synchronization of quasi-periodic oscil-
lations. One of the simplest systems used to study
this problem is an ensemble of coupled van der Pol
oscillators. It is a universal model whose dynam-
ics is widely investigated [Pikovsky et al., 2001;
Landa, 1996; Balanov et al., 2009; Guckenheimer &
Holmes, 1983]. In the case of small coupling param-
eter multifrequency quasi-periodic dynamics are

typical for such ensemble. The study of systems
with three-frequency and higher-dimensional quasi-
periodicity is a complex and multifaceted problem.
The cases of three oscillators with dissipative cou-
pling and two nonautonomous oscillators with dis-
sipative coupling are considered in the following
papers [Anishchenko et al., 2009, 2006, 2007, 2008;
Emelianova et al., 2013; Emelianova et al., 2014;
Kuznetsov et al., 2013; Broer et al., 2008a, 2008b;
Vitolo et al., 2010; Broer et al., 2011; Banerjee et al.,
2012; Sekikawa et al., 2014; Kamiyama et al., 2012;
Landa, 1996]. In one of the most fundamental works
[Landa, 1996] a system of two coupled rotation
maps is discussed as a model of three coupled oscil-
lators. The frequency detuning parameters plane
is analyzed and a variety of bifurcations observed
in coupled maps are discussed. The problem of the
dynamics of ensembles of three phase oscillators is
discussed, for example, in [Emelianova et al., 2013;
Emelianova et al., 2014; Ashwin et al., 1990; Ash-
win et al., 2008], and four or more oscillators, for
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example, in [Emelianova et al., 2013; Emelianova
et al., 2014; Maistrenko et al., 2004; Kuznetsov
et al., 2011].

Revealing the bifurcation mechanisms of the
destruction of complete synchronization is one of
the important tasks [Anishchenko et al., 2009;
Emelianova et al., 2013]. One of the features, in
the case of three dissipatively coupled oscillators, is
a degenerate saddle-node bifurcation. In this case,
two pairs of singular points — a stable equilibrium
point and a saddle, and an unstable equilibrium
point and a second saddle — are merging simultane-
ously. The reason for this behavior is the presence
in the phase space of a common heteroclinic con-
tour including all of the four equilibrium points. In
the case of a system of three coupled oscillators, the
bifurcation curves of this type border the region of
complete synchronization in the parameter plane of
coupling strength and frequency detuning. It takes
a form of a characteristic tongue [Emelianova et al.,
2013]. In this case, the synchronization region has
a threshold for the coupling parameter value. The
point defining the threshold value lies at the inter-
section of two lines of degenerate saddle-node bifur-
cations. This point corresponds to a codimension
two bifurcation. All four possible equilibrium states
merge simultaneously at this point [Emelianova
et al., 2013; Landa, 1996]. In turn, it was shown
in [Ashwin et al., 1990; Ashwin et al., 1993] that
the emergence of three-frequency quasi-periodicity
is due to the saddle-node bifurcation of a stable and
unstable two-frequency tori.

In the present paper, we consider a similar
problem for the case of a chain of four coupled
oscillators. The aim of the work is to reveal the
hierarchical structure of synchronization regions of
multifrequency modes of different dimensions, as
well as to analyze the bifurcation mechanisms of
the destruction of two- and higher frequency quasi-
periodicity. The study will be carried out in terms
of the phase model obtained analytically.

The work is structured as follows. In Sec. 2, we
derive a system of phase equations for a chain of
coupled van der Pol equations using the method of
complex amplitudes. In Sec. 3, we present a detailed
description of the structure of the parameter plane
for this model and discuss the typical dynamical
regimes. In Sec. 4, we discuss a sequence of bifur-
cations which lead to a system of hierarchically

organized regions of multifrequency regimes in the
parameter plane.

2. The System Equations

We consider a chain of four van der Pol oscillators
with dissipative coupling:

ẍ− (λ− x2)ẋ+ x+ μ(ẋ− ẏ) = 0,

ÿ − (λ− y2)ẏ + (1 + Δ1)y

+ μ(ẏ − ẋ) + μ(ẏ − ż) = 0,

z̈ − (λ− z2)ż + (1 + Δ2)z

+ μ(ż − ẏ) + μ(ż − ẇ) = 0,

ẅ − (λ− w2)ẇ + (1 + Δ3)w

+ μ(ẇ − ż) = 0.

(1)

Here λ is the control parameter responsible for the
excitation of the partial oscillators; Δ1, Δ2 and Δ3

are frequency detunings between the second and the
first oscillators, the third and the first oscillators,
the fourth and the first oscillators respectively; μ
is the parameter of the dissipative coupling. The
frequency of the first oscillator is assumed to be
normalized by one.

Following the method presented in the works
[Emelianova et al., 2013; Emelianova et al., 2014],
we obtain the corresponding Landau–Stewart equa-
tions. For this purpose, we will use the method of
complex amplitudes1 [Pikovsky et al., 2001; Landa,
1996]. We present dynamic variables in the form:

x = a exp(it) + a∗ exp(−it),
y = b exp(it) + b∗ exp(−it),
z = c exp(it) + c∗ exp(−it),
w = d exp(it) + d∗ exp(−it)

(2)

and use additional conditions traditional for this
method:

ȧ exp(it) + ȧ∗ exp(−it) = 0,

ḃ exp(it) + ḃ∗ exp(−it) = 0,

ċ exp(it) + ċ∗ exp(−it) = 0,

ḋ exp(it) + ḋ∗ exp(−it) = 0.

(3)

Here a(t), b(t), c(t), d(t) are the slow complex
amplitudes of four oscillators, which are varying

1It is a standard method. Therefore, we do not reproduce complete calculations here.
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slowly in comparison with the basic oscillations
with the unit frequency. Then we substitute expres-
sions (2) and (3) into Eqs. (1), multiply the equa-
tions by factor exp(−it), and perform averaging
over a period of the basic oscillations. Then, we get
the set of truncated equations:

2ȧ = a− |a|2a− μ(a− b),

2ḃ = b− |b|2b+ iΔ1b− μ(2b− a− c),

2ċ = c− |c|2c+ iΔ2c− μ(2c− b− d),

2ḋ = d− |d|2d− μ(d− c).

(4)

A control parameter λ is removed by renormaliza-
tion of variables and parameters.

Let us set a = R exp(iψ1), b = r exp(iψ2),
c = v exp(iψ3), d = w exp(iψ4). Here R, r, v and
w are real oscillator amplitudes, and ψi are oscil-
lator phases. If we now assume that the parame-
ter of the coupling is small and all oscillators move
in the vicinity of their unperturbed orbits of unit
radius then similar to the [Emelianova et al., 2013;
Emelianova et al., 2014] we obtain the phase equa-
tions for the relative phases of the oscillators:

θ̇ = −Δ1

2
− μ sin θ +

μ

2
sinϕ,

ϕ̇ =
Δ1 − Δ2

2
+
μ

2
sin θ − μ sinϕ+

μ

2
sinφ,

φ̇ =
Δ2 − Δ3

2
+
μ

2
sinϕ− μ sinφ.

(5)

Here

θ = ψ1 − ψ2, ϕ = ψ2 − ψ3, φ = ψ3 − ψ4.

3. The Typical Dynamic Regimes

Figure 1 shows the chart of Lyapunov exponents2

of the system (5) on the parameter plane of fre-
quency detuning and parameter of coupling (Δ1,
μ). To draw the chart, we use the following method.
We calculate the Lyapunov exponents at each green
point of the parameter plane (Δ1, μ). Then we dis-
tinguish the following dynamic regimes depending
on the signature of the spectrum of Lyapunov
exponents:

(1) the complete synchronization of four oscillators
P (red color), in this case, all Lyapunov expo-
nents are negative;

(2) the two-frequency quasi-periodicity T2 (yellow
color), in this case, the first Lyapunov exponent
equals zero and the other l Lyapunov exponents
are negative;

(3) the three-frequency quasi-periodicity T3 (blue
color), in this case, the first and the second
Lyapunov exponents equal zero and the third
Lyapunov exponent is negative;

(4) the four-frequency quasi-periodicity T4 (light
blue color), in this case, the first, the second
and the third Lyapunov exponents equal zero;

(5) the chaotic attractor C (the black color), in this
case, the first Lyapunov exponent is positive.

(a) (b)

Fig. 1. Chart of Lyapunov exponents for the system of four coupled van der Pol oscillators (5) with its magnified frag-
ment. Δ2 = 0.3, Δ3 = 1. P is the region of complete synchronization of four oscillators; T2 is the region of two-frequency
quasi-periodicity; T3 is the region of three-frequency quasi-periodicity; T4 is the region of four-frequency quasi-periodicity; the
region of chaotic attractor is indicated by black color; QSNF is the quasi-periodic point saddle node fan; points 1 and 2 are
intersection points of lines (7) which are shown in black color.

2When calculating the exponents, we chose the initial phase values in the vicinity of the origin and the time interval was
equal to 10000 units of normalized time. This type of computation leads to what should be called “local finite-time Lyapunov
exponents”, but for brevity we will use the term “Lyapunov exponents” below.
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Here the types of regimes are indicated as for
the original system (1), while the signature of the
spectrum is indicated for the system (5). In this case
(as we will show below) there exists a certain cor-
respondence between the regimes of the system (5)
and of the unabridged system (1) which is due to
the averaging procedure.

In Fig. 1(a), one can see hierarchical organiza-
tion of regions corresponding to different types of
synchronization regimes. Its enlarged fragment in
Fig. 1(b) presents the case of weak coupling. In this
figure one can see two tongues of three-frequency
quasi-periodic modes immersed in the domain of
four-frequency quasi-periodicity. The tops of these
tongues lie on the axis Δ1 at points determined by
the following resonance conditions. The frequency
of the first oscillator coincides with the frequency of
the second oscillator (Δ1 = 0). And the frequency
of the second oscillator coincides with the frequency
of the third oscillator (Δ1 = Δ2).3

To illustrate some typical regimes of the sys-
tem (5), examples of attractors in the space of three
relative phases are shown in Fig. 2. The letters cor-
respond to the points on the chart of Lyapunov
exponents [Fig. 1(a)]. Figures 2(b) and 2(c) demon-
strate the simplest invariant curves embedded in the
three-dimensional phase space. They correspond to
two-frequency quasi-periodic modes.4

In Fig. 2(a) the phases θ and φ fluctuate around
a certain equilibrium value, while the phase ϕ varies
across the whole range of values (0, 2π). It means
that oscillators are mode-locked pairwise, namely
the first is synchronized with the second oscilla-
tor and the third with the fourth, as schemat-
ically shown in Fig. 3(a). We can classify the
two-frequency quasi-periodic partial synchroniza-
tion modes using three-component rotation num-
bers w = p : q : r, where p, q and r correspond to
the numbers of essential intersections of the invari-
ant curve with the cube sides in the space of relative
phases of the oscillators (θ, ϕ, φ). The above mode
has a rotation number w = 0 : 1 : 0 [Fig. 2(a)].

In Fig. 2(b) one can see a similar regime. Now
the phases θ and ϕ fluctuate around a certain equi-
librium value, while the phase φ varies across the

whole range of values. This situation corresponds
to the situation when first, second and third oscil-
lators are partially mode-locked simultaneously, as
shown in Fig. 3(b). Rotation number of the observed
regime is w = 0 : 0 : 1.

Figure 2(c) shows the case when second, third
and fourth oscillators are mode-locked. In this case,
the rotation number is w = 1 : 0 : 0. And the result-
ing clustering is shown schematically in Fig. 3(c).

Note that in each of the three considered
cases, each locked pair of phase variables fluctuates
around a zero (or 2π) values. This corresponds to
“in-phase” mode-locking of each pair of oscillators.

The schematic representation of emerging sim-
plest two-frequency modes T2 (Fig. 3) is presented
as the first step in the construction of a “cluster-
ing tree”, which is a useful guide in studying the
regimes of four coupled oscillators.

Let us now pass to the region of three-frequency
quasi-periodicity5 and consider the points (d)–(f)
in Fig. 1(a). Now attractors are invariant surfaces
which are everywhere densely covered with phase
trajectories. In case Fig. 2(d) the phase φ fluctu-
ates weakly. This means that the third and fourth
oscillators are partially mode-locked. In Figs. 2(e)
and 2(f) one can see two other possible types of
partial mode-locking of pairs of oscillators. These
figures show phase portraits differently oriented
in phase space invariant surfaces. In the “cluster-
ing tree”, the qualitative configuration of emerging
clusters is shown as in Figs. 3(d)–3(f).6

A more complex case is illustrated in Fig. 2(g).
In this case, an invariant curve with the rotation
number w = 0 : 1 : 1 is observed. It may be con-
sidered as arising on the surface shown in Fig. 2(e)
as a result of “condensation of trajectories”. This is
another example of a resonant two-frequency regime
that occurs on the surface of a three-frequency
regime shown in Fig. 2(e). The system under con-
sideration exhibits many other tongues of two-
frequency modes with different rotation numbers.

As the coupling decreases, clusters correspond-
ing to three-frequency modes will be destroyed
with the appearance of a four-frequency quasi-
periodicity.7 In this case, the phase trajectories fill

3Since we vary the frequency of one oscillator (the second), the number of such resonances is equal to the number of its nearest
neighbors, i.e. in this case two. For a network, it will depend on the number of partial systems and the topology of coupling.
4In the system (1), this regime corresponds to a two-frequency torus.
5In the system (1), this regime corresponds to a three-frequency torus.
6The fourth figure in this series is qualitatively similar to the case Fig. 2(d).
7In the system (1), this regime corresponds to a four-frequency torus.
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Fig. 2. (a)–(i) Attractors of the system (5) plotted at the parameter plane points, which are indicated in Fig. 1(a).

the whole volume of the phase cube, as shown
in Fig. 2(h). Note that chaotic attractors can be
observed in some ranges of parameters. The param-
eter plane has a very involved structure in such
regions due to the possibility of multistability and

existence of hidden attractors [Dudkowski et al.,
2016; Kuznetsov, 2020]. But these phenomena are
beyond the scope of our study. An example of
chaotic attractor is shown in Fig. 2(i). Visually,
the four-frequency mode and chaotic attractors are

2230008-5



March 3, 2022 8:13 WSPC/S0218-1274 2230008

A. P. Kuznetsov et al.

Fig. 3. Schematic “clustering tree” of four phase oscillators.
The “tree” illustrates the emergence of clusters with decreas-
ing coupling. The letters correspond to the points in Fig. 1.
[The configuration in the fourth figure in the third line is
equivalent to the case in Fig. 2(d).]

difficult to distinguish. But in the case of a quasi-
periodic mode, the phase trajectories fill the phase
cube more uniformly.

4. Bifurcation Scenarios of the
Destruction of Complete
Synchronization

Let us discuss the bifurcations responsible for the
destruction of the regime of complete synchroniza-
tion. Assuming θ̇ = ϕ̇ = φ̇ = 0 from Eqs. (5), we
can obtain:

sin θ =
Δ1 + Δ2 + Δ3

4μ
,

sinϕ =
Δ1 − Δ2 − Δ3

2μ
,

sinφ =
Δ1 + Δ2 − 3Δ3

4μ
.

(6)

Solutions to each of Eqs. (6) appear in pairs: (θ1,
θ2), (ϕ1, ϕ2) and (φ1, φ2). Therefore, system (5)
has eight equilibrium states located in the phase
space (θ, ϕ, φ) at the vertices of the parallelepiped
[Emelianova et al., 2014]. One of these solutions is
always stable, and the rest are saddles and an unsta-
ble node. Moreover, all eight equilibrium states
are interconnected by common invariant manifolds,
which determine the evolution of attractors.

When we vary any of the three combinations
of parameters on the right-hand sides of expres-
sions (6), the two sides of the parallelepiped will
approach each other and merge. In this case, as soon
as the sine of one of the phase variables turns to
unity in (6), the eight equilibrium states merge pair-
wise and simultaneously disappear via a nonrobust
state consisting of four neutral equilibrium states.
Herewith, complete synchronization is destroyed.
From the above considerations, we obtain the fol-
lowing expressions that determine the saddle-node
bifurcations of the mentioned type:

μ =
Δ1 + Δ2 + Δ3

4
,

(a) (b)

Fig. 4. Saddle-node bifurcations of the invariant curves. This bifurcation is responsible for the emergence of three-frequency
quasi-periodicity. µ = 0.2, (a) Δ1 = 0.16 and (b) Δ1 = 0.26.
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μ =
Δ1 − Δ2 − Δ3

2
,

μ =
Δ1 + Δ2 − 3Δ3

4
.

(7)

Thus, three variants of such a bifurcation arise.
Each of them corresponds to the merging of the
faces of the parallelepiped along one of the three
phase axes.

Segments of lines (7) limit the domain of com-
plete synchronization shown in Fig. 1 by black

color. Their intersections define points of codimen-
sion two, which lead to the appearance of charac-
teristic “kinks” at the domain’s boundary, they are
marked with numbers 1 and 2. Moreover, one of
them defines the threshold of the region of complete
synchronization.

As a result of the above described bifurcation,
four invariant curves arise from the closed invari-
ant manifolds of neutral equilibrium states. They
are shown in Fig. 4. One of them will be stable
(it is marked by St). The second of them will be
unstable (it is marked by N). And the other two

(a) (b)

(c)

Fig. 5. Saddle-node bifurcation of the invariant surfaces. This bifurcation is responsible for the emergence of four-frequency
quasi-periodicity. I is the stable invariant surface. µ = 0.05, (a) Δ1 = 0.28, (b) Δ1 = 0.22 and (c) Δ1 = 0.2.
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will be saddles (they are marked by Sd). The stable
invariant curve of the system (5) will be respon-
sible for the two-frequency quasi-periodic mode of
the system (1). Let us now discuss the bifurcations
corresponding to the destruction of two-frequency
quasi-periodicity.

The vicinity of the threshold point of two-
frequency quasi-periodicity is shown in an enlarged
form in Fig. 1(b). It should be noted that the
observed structure in the parameter space is similar
to the so-called “saddle node fan” point, which was
discussed for the case of three coupled oscillators
in [Emelianova et al., 2013; Pikovsky et al., 2001].
(Saddle-node fan is a codimension two bifurcation
point at which two different saddle-node bifurcation
lines of the resonant cycles merge. It is located at
the border of the complete synchronization region.)
The difference consists of an increase by one in the
dimension of the observed quasiperiodic regimes:
i.e. instead of the region of complete synchroniza-
tion, there is a region of two-frequency quasiperi-
odicity. Instead of a region of two-frequency quasi-
periodicity we have a region of three-frequency
quasi-periodicity, and instead of a system of fan-
shaped tongues of three-frequency modes, a simi-
lar system of four-frequency tongues exists. There-
fore, we will call such a point “the quasi-periodic
point saddle node fan” and denote it QSNF. We also
note a certain difference. There is a new system of
narrow tongues of two-frequency modes inside the
regions T3 [Fig. 1(b)]. These resonance regimes cor-
respond to the situation when invariant curves of
different types appear on the corresponding invari-
ant surface.

When going beyond the limits of the corre-
sponding tongue, the two-frequency quasiperiodic-
ity is destroyed. Figure 4 illustrates the bifurcation
scenario corresponding to the exit from the region
T2 [Fig. 1(b)] through its right border. In this case,
the stable, unstable, and two saddle invariant curves
approach each other in pairs [in the direction shown
by the arrow in Fig. 4(a)] as the parameter Δ1

increases. As a result, they simultaneously merge
and disappear in pairs. Stable I and an unstable
invariant surface, shown in Fig. 4(b), arise from
their common closed invariant manifolds.

If we leave the region T2 [Fig. 1(b)] through
its left boundary, the direction in which the curves
approach and, hence, the content of merging pairs,
changes. Now the saddle curve marked with an
arrow in Fig. 4 merges with the unstable invariant

curve. As a result, invariant surfaces oriented in a
different way arise.

Directly at the point QSNF, all four invariant
curves shown in Fig. 4(a) simultaneously contract
into one curve. This is a codimension two degener-
ate situation.

Figure 5 illustrates further evolution of the
quasi-periodic regime, when the destruction of the
three-frequency quasi-periodicity is observed. This
occurs as a result of the merging of stable and unsta-
ble invariant surfaces. Such a scenario is observed
when we cross the left border of the tongue of three-
frequency modes T3 [Fig. 1(b)].

In Fig. 5, one can see that when we cross
the bifurcation point (transition from fragment b
to fragment c) the invariant surfaces disappear
abruptly with the appearance of trajectories filling
the entire phase cube. This is a characteristic fea-
ture of the discussed bifurcation.

5. Conclusion

For a chain of four phase oscillators with dissipative
coupling, the pattern of domains in the parameter
space (frequency detuning and parameter of cou-
pling) includes hierarchically organized regions of
multifrequency regimes with different numbers of
incommensurate frequencies. The regions of four-
frequency quasi-periodicity are dominating at small
values of the parameter coupling. And only in the
vicinity of the zero value of the frequency detuning,
small tongues of three-frequency quasi-periodicity
are observed. The regions of complete synchroniza-
tion with two-frequency quasi-periodicity have a
threshold in terms of the coupling parameter at the
points “saddle node fan” and “the quasi-periodic
point saddle node fan”, respectively.

The bifurcation mechanism of the destruction
of two-frequency quasi-periodicity consists in the
pairwise merging of four invariant curves: stable,
unstable, and two saddle curves. As a result, stable
and unstable invariant surfaces appear in the phase
space, which are the images of three-frequency
quasi-periodicity. The kink point of the border of
the corresponding domain is a point of codimen-
sion two bifurcation at which all four curves merge
simultaneously. In turn, the destruction of three-
frequency regime is due to the merging of stable and
unstable invariant surfaces. It can be assumed that
the features presented in the work (both the struc-
ture of the parameters plane and the bifurcations

2230008-8
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responsible for the destruction of quasi-periodic
regimes) have a high degree of universality and will
be observed in chains of higher dimension.
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