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Abstract—A spin-transfer oscillator is a nanoscale device demonstrating self-sustained pre-
cession of its magnetization vector whose length is preserved. Thus, the phase space of this
dynamical system is limited by a three-dimensional sphere. A generic oscillator is described
by the Landau –Lifshitz –Gilbert – Slonczewski equation, and we consider a particular case of
uniaxial symmetry when the equation yet experimentally relevant is reduced to a dramatically
simple form. The established regime of a single oscillator is a purely sinusoidal limit cycle
coinciding with a circle of sphere latitude (assuming that points where the symmetry axis
passes through the sphere are the poles). On the limit cycle the governing equations become
linear in two oscillating magnetization vector components orthogonal to the axis, while the
third one along the axis remains constant. In this paper we analyze how this effective linearity
manifests itself when two such oscillators are mutually coupled via their magnetic fields. Using
the phase approximation approach, we reveal that the system can exhibit bistability between
synchronized and nonsynchronized oscillations. For the synchronized one the Adler equation
is derived, and the estimates for the boundaries of the bistability area are obtained. The two-
dimensional slices of the basins of attraction of the two coexisting solutions are considered. They
are found to be embedded in each other, forming a series of parallel stripes. Charts of regimes
and charts of Lyapunov exponents are computed numerically. Due to the effective linearity the
overall structure of the charts is very simple; no higher-order synchronization tongues except
the main one are observed.
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1. INTRODUCTION

A spin-transfer oscillator is a nanoscale device that exhibits self-sustained oscillations due to
the spin-transfer-torque effect from a current with spin polarization that it acquires when passing
through a permanent magnet. The angular momentum carried by this current exerts a torque on
the magnetization vector of a nanomagnet that results in the magnetization vector precession.
The simple configuration of the spin-transfer nanooscillator is shown in Fig. 1. It consists of two
ferromagnetic layers separated by a nonmagnetic spacer. The lower “fixed” layer is relatively thick so
that its magnetization �p remains constant. The upper one is thin and thus “free”: its magnetization

�m can be changed. Downward current density �j corresponds to the upward electron flow that passes
through the fixed layer, first acquiring spin polarization. Then the flow comes to the free layer and
excites its magnetization �m oscillations due to the spin-transfer-torque effect. Also, an external

magnetic field �hext can be applied. More details on the physical implementation of this device can
be found in Refs. [1, 2].
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Fig. 1. A spin-transfer nanooscillator. The fixed layer is a thick ferromagnet with permanent magnetization
�p. The free layer is a relatively thin ferromagnet whose magnetization can easily be changed. The spacer is a

nonmagnetic layer made of insulator or nonmagnetic metal. The current density vector �j is downward so that
the upward electron flow passes through the fixed layer, first acquiring there the spin polarization, and then
excites the oscillating magnetization �m of the free layer due to spin-transfer-torque effect. Also, an external

magnetic field �hext can be applied.

The first theoretical description of how to modify a magnetization of nanomagnets via the spin-
transfer-torque effect from a spin-polarized current was suggested by Slonczewski [3] and Berger [4]
in 1996. This is based on the Landau –Lifshitz –Gilbert equation which describes magnetization
dynamics in ferromagnets in the presence of precession damping. The spin-transfer-torque effect is
taken into account by adding a term that is now known as the Slonczewski spin-transfer torque [3].
The resulting Landau –Lifshitz –Gilbert – Slonczewski equation in dimensionless form reads [1]

�̇m− α�m× �̇m = −�m× �heff +
β

1 + cp(�m · �p) �m× (�m× �p). (1.1)

Here “·” and “×” denote dot and cross products, respectively, �m is a unit vector representing
oscillating magnetization in the free layer, �p is also a unit vector indicating constant magnetization
direction in the fixed layer, α is a parameter controlling the Gilbert damping of the spin precession,

and β is proportional to the current density j. The effective magnetic field �heff is the sum of the
external, demagnetizing and anisotropy fields (see [1, 5] for more details). Making a physically
reasonable assumption that the free layer is a flat ellipsoid, and that the crystal anisotropy is
uniaxial in nature, with the anisotropy axis parallel to one of the principal axes of the ellipsoid, see
the book [1] and many other publications, e. g., [6–10], where this assumption is utilized, one can
write the effective field as

�heff = �hext −D�m, (1.2)

where D is a diagonal anisotropy tensor and �hext is the external field. The coefficient cp in Eq. (1.1)
depends on physical properties of the considered nanodevices as well as on the degree of the spin
polarization of the current. It may attain values in the interval −1 < cp < 1 [1]. In theoretical
studies it is often assumed that cp = 0, see, e. g. [6–10]. In what follows we will also make this
assumption.

Straightforward vector algebra shows that �̇m · �m = 0. This means that an arbitrary initial norm
of �m will be preserved in time. Since Eq. (1.1) is obtained after normalization of the free layer
magnetization by its saturation value [1], the initial vector �m(t = 0) will always be taken of the
unit norm so that ‖�m(t)‖ = 1 for any t.

Since the generation of spin-transfer oscillators was observed experimentally [11, 12], a lot of
attention has been attracted to the collective behavior of the coupled oscillators. The coupling
between spin-transfer oscillators is usually introduced either through common current or via a
magnetic dipolar field. Coupling via common current means that the devices are connected in
parallel or in series. Due to a giant magnetoresistance effect their resistance oscillates along with
magnetization. It results in the current variation, which in turn influences back the oscillations [6,
7, 9, 10].
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In this paper we consider the second type of coupling when the magnetic field of one oscillator
influences another oscillator and vice versa. Such sort of coupling is implemented experimentally [13]
and theoretically [14, 15]. In [16], an amplitude equation is derived for the coupled spin-transfer
oscillators and the field coupling is also considered.

The focus in studying coupled spin-transfer oscillators is on phase locking by external forcing and
mutual synchronization if two or more oscillators are coupled. These effects are known to be typical
for systems with self-sustained oscillations [17]. In addition to fundamental interest, synchronization
of spin-transfer oscillators is important for practical applications since a single oscillator has rather
weak output power [18].

The papers [6, 7] analyze synchronization of an array of spin-transfer oscillators coupled via
common current and describe multistability when nonsynchronous regimes coexist with fully
synchronized oscillations. As a result, this complete synchronization does not always develop from a
random initial state. In many cases nontrivial clustering, including quasi-periodic and chaotic states,
is observed. In more detail the complex clustering is analyzed in [9]. Various regimes of different
levels of complexity, including chimeras, are discussed. In [10], it is demonstrated that the lack of
full synchronization of the spin-transfer oscillators can be a result of proximity to the homoclinicity.
The noise added to the system in this situation can suppress precession of all oscillators.

In this paper we consider a particular form of the spin-transfer oscillator when it has uniaxial
symmetry. This case yet practically relevant is described by dramatically simpler equations as
compared to the generic form (1.1). Two such oscillators coupled via magnetic fields are found to
have no higher resonances in their parameter space except the main one where the frequencies ratio
is 1 : 1. Thereby, the parameter space has a very simple structure: there are areas of two types,
one for a fully synchronized regime and another for nonsynchronized oscillations. Similarly to the
case reported for common current coupling [6, 7], bistability is observed. For a certain range of
the coupling parameter, two solutions coexist: the synchronized and nonsynchronized ones. Their
basins of attraction in the phase space, as observed on the two-dimensional slices, are embedded
in each other: the slices consist of sufficiently thin parallel stripes. Small variation of the initial
conditions can result in a regime switch from synchronization to nonsynchronized oscillations.

2. SINGLE OSCILLATOR WITH UNIAXIAL SYMMETRY

We are going to consider a practically important, but yet simple particular case of uniaxial
symmetry around the z-axis [1]:

�heff = hz�ez −mz�ez, �p = �ez, (2.1)

where the diagonal elements of D are reduced to (0, 0, 1) and hz is the only nonzero component of

the external field �hext. In this case Eq. (1.1) takes the form

(1 + α2)ṁx =mzAmx +Bmy,

(1 + α2)ṁy =−Bmx +mzAmy,

(1 + α2)ṁz =A(m2
z − 1),

(2.2)

A = (mz − hz + β/α)α, B = mz − hz − βα, (2.3)

where mx, my, mz are components of a vector �m. This system has three control parameters:
α is responsible for precession damping and depends on the properties of oscillator material, β is
proportional to the current density that flows through the oscillator, and hz is an externally applied
magnetic field.

The dynamics of the uniaxial oscillator (2.2) is considered in detail in [1]. We discuss it only
briefly. Equations (2.2) are split into two subsystems since mz does not depend on mx and my. The
equation for mz has three fixed points: mz = ±1 and mz = hz − β/α, and only one of them can be
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stable, as follows from their linear stability analysis [1]. Solutions corresponding to mz = ±1 imply
that mx = my = 0 and thus are nonoscillatory. The conditions of their stability are

mz =− 1 at hz − β/α <− 1,

mz =1 at hz − β/α >1.
(2.4)

The oscillatory solution corresponds to the third fixed point:

mz =hz − β/α at − 1 < hz − β/α < 1. (2.5)

When mz approaches one of the fixed points (2.4) or (2.5), it varies slowly so that we can neglect
its variation in equations for mx and my and solve them as follows:

mx = remzAt cosBt, my = −remzAt sinBt, (2.6)

where r depends on mz according to the condition m2
x +m2

y +m2
z = 1. When either mz = 1 or

mz = −1 is stable, see Eq. (2.4), the exponent is negative, mzA < 0, and mx and my decay to
zero while rotating around the z axis. These fixed points are stable foci. When mz = hz − β/α is
stable, see Eq. (2.5), the exponent mzA is positive near mz = ±1, so that these fixed points are
now unstable foci. The exponent vanishes as mz approaches hz − β/α. As a result, at this point
the stationary oscillatory solution is

mx =
√

1− a2 cos(ωt+ f), my =
√

1− a2 sin(ωt+ f), mz = a, (2.7)

where f is a constant that depends on the initial conditions, and the eigenfrequency ω and the
stationary amplitude a of the oscillator are

ω = β/α, (2.8)

a = hz − β/α. (2.9)

It should be noted that Eq. (2.7) is an exact stationary solution of the uniaxial oscillator (2.2).
This solution is purely sinusoidal, without harmonics, and the oscillating subsystem of Eq. (2.2) is
linear in mx and my. This means that, when this system is forced periodically or interacts with
another oscillating system, no higher-order resonances are possible, at least when the interaction
is not very strong. This is due to the fact that the perturbation transfer mechanism between
harmonics occurs via nonlinearity and this is effectively absent. More complicated regimes, if any,
can be expected only when the interaction produces an essential perturbation to mz.

3. FIELD COUPLING

We will consider oscillators coupled via magnetic fields in dipole approximation. In this case the
field is assumed to be proportional to the magnetization of the oscillators and the coupling term
for the nth oscillator is introduced as a correction to the effective field (c. f. Eq. (1.2)):

�heff,n = �hext −D�mn + ε

N∑

j=1,j �=n

an,j �mj. (3.1)

Here �mj is magnetization of the jth oscillator in an ensemble and ε is the coupling strength.
Coefficients an,j ∈ [0, 1] determine the structure of couplings.

Assuming the effective field to be given by Eq. (3.1), we can write the Landau –Lifshitz –Gilbert –
Slonczewski equations for a network of spin-transfer oscillators as follows (as already mentioned
above, cp = 0):

�̇mn − α�mn × �̇mn = −�mn × �heff,n + βn �mn × (�mn × �p). (3.2)

Coefficients an,j in Eq. (3.1) form an adjacency matrix of the oscillator network. Since �heff,n
appears in Eq. (3.2) as a part of the cross product with �mn, the diagonal elements an,n vanish due
to the identity �mn × �mn = 0. The values of an,j depend on the decay rate of the magnetic field
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between oscillators. For example, a dipole field falls off as the inverse cube of the distance [19].
Since the field propagates as an electromagnetic wave, filling the area between oscillators with an
absorbing medium, one can obtain an exponential decay. Thus, selecting the oscillator configuration,
one needs to take into account their geometrical locations. Moreover, due to sufficiently fast fall-off
of the fields it is natural to assume that the coupling strength ε is rather small.

Similarly to the single oscillator (1.1), each oscillator vector �mn in the network (3.2) preserves

its length, ‖�mn(t)‖ = 1. This can be checked directly by computing the dot product �̇mn · �mn, which
remains zero for any t.

4. TWO COUPLED OSCILLATORS. PHASE APPROXIMATION ANALYSIS

Consider two oscillators coupled according to the scheme discussed in Section 3. The equations
for the first one read

(1 + α2)ṁ1,x =m1,zA1m1,x +B1m1,y

+ ε {α[m2,x − (�m1 · �m2)m1,x]−m1,ym2,z +m2,ym1,z} ,
(1 + α2)ṁ1,y =−B1m1,x +m1,zA1m1,y

+ ε {α[m2,y − (�m1 · �m2)m1,y] +m1,xm2,z −m2,xm1,z} ,
(1 + α2)ṁ1,z =A1(m

2
1,z − 1)

+ ε {α[m2,z − (�m1 · �m2)m1,z]−m1,xm2,y +m2,xm1,y} ,

(4.1)

A1 = (m1,z − hz + β1/α)α, B1 = m1,z − hz − β1α. (4.2)

Equations for the second oscillator are obtained by the index exchange 1 ↔ 2. The full equations
set for two oscillators have five control parameters. We assume that the damping α, the magnetic
field hz and the coupling strength ε are the same for both oscillators and they have different current
densities that are incorporated into β1 and β2, respectively.

These equations can be rewritten via spherical coordinates

m1,2,x = sin θ1,2 cosφ1,2, m1,2,y = sin θ1,2 sinφ1,2, m1,2,z = cos θ1,2. (4.3)

Since oscillations occur basically in the xy-plane, the variables φ1,2 play the role of phases and
θ1,2 correspond to the amplitudes. Each oscillator is symmetric with respect to rotation around
the z axis. Thus, the equations in spherical coordinates can be written with respect to the phase
difference ψ = φ1 − φ2 and the amplitudes θ1 and θ2:

(1 + α2)ψ̇ =cos θ2 − cos θ1 + α(β1 − β2) + ε
(
cos θ2 − cos θ1

−α sinψ[csc θ1 sin θ2 + sin θ1 csc θ2] + cosψ[sin θ1 cot θ2 − cot θ1 sin θ2]
)
, (4.4a)

(1 + α2)θ̇1 =
(
α cos θ1 + β1 − αhz

)
sin θ1 + ε

(
[α cosψ cos θ1 − sinψ] sin θ2 − α sin θ1 cos θ2

)
, (4.4b)

(1 + α2)θ̇2 =
(
α cos θ2 + β2 − αhz

)
sin θ2 + ε

(
[α cosψ cos θ2 + sinψ] sin θ1 − α sin θ2 cos θ1

)
. (4.4c)

Here csc θ = 1/ sin θ and cot θ = cos θ/ sin θ denote cosecant and cotangent functions, respectively.
Equations (4.4) do not depend on particular phases φ1,2 and can be solved separately. Equations
for φ1,2 are coupled with Eqs. (4.4) in a unidirectional way and are not coupled with each other:

(α2 + 1)φ̇1 =− cos θ1 + hz + αβ1 + ε (cos θ2 − [α sinψ + cosψ cos θ1] sin θ2 csc θ1) , (4.5a)

(α2 + 1)φ̇2 =− cos θ2 + hz + αβ2 + ε (cos θ1 + [α sinψ − cosψ cos θ2] sin θ1 csc θ2) . (4.5b)

Equations (4.4) have a fixed point solution

ψ = const, θ1 = θ2 = θ = const, (4.6)

that corresponds to the regime of full synchronization of the oscillators: the phases φ1 and φ2 are
locked, so that the their difference ψ remains constant and the amplitudes θ1 and θ2 coincide and
are also constant. Substituting (4.6) into Eqs. (4.4), we obtain stationary solutions for ψ and θ:

sinψ =
β1 − β2

2ε
, (4.7a)
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cos θ =

(√
4ε2 − (β1 − β2)2 + 2ε− 2

)
(2αhz − β2 − β1)

α (8ε− [β1 − β2]2 − 4)
. (4.7b)

When the eigenfrequencies of the oscillators (2.8) are close to each other, i.e., (β1 − β2) is small,
Eq. (4.7b) is reduced via Taylor series expansion to the form

cos θ = hz −
β1 + β2

2α
+O

(
(β1 − β2)

2
)
. (4.8)

This is the mean value of stationary amplitudes for the uncoupled oscillators, see Eq. (2.7).
Substituting the stationary solution (4.7) into the equations for the phases (4.5), we obtain

φ̇1 = φ̇2 = ωs, where

ωs =
β1 + β2

2α
. (4.9)

Here ωs is the frequency of the synchronized oscillations. Observe that it is equal to the mean
frequencies of the partial oscillators, see Eq. (2.8).

The synchronized solution can be analyzed using phase approximation. When the system is not so
far from the limit cycle corresponding to the synchronous regime, the amplitudes of the subsystems
are close to the amplitudes on the cycle. Thus, given the equations describing the dynamics in terms
of phases and amplitudes, we can substitute the amplitudes on the cycle into the equations and
consider phase dynamics only. The phase equation taking into account the first-order terms in the
coupling strength is called the Adler equation. It was first obtained by Adler [20] for a particular
system, and later a general method of analysis of dynamical systems that include derivation of the
phase equation was developed by Khokhlov [21, 22]. A discussion and a description of this method
of analysis can be found in the book [17] and its higher-order generalization is considered in [23, 24].

The Adler equation for our system is derived from Eq. (4.4a) after the substitution θ1 = θ2 = θ.
The terms including θ are canceled, so that the equation for ψ takes the form

ψ̇ = δ − μ sinψ, (4.10)

where

δ =

(
α2

α2 + 1

)
β1 − β2

α
, μ =

(
α2

α2 + 1

)
2ε

α
. (4.11)

Equation (4.10) is a universal model of phase locking for weakly interacting rotators. Parameter
μ in this equation is the coupling strength and δ is the frequency detuning (we recall that the
eigenfrequency of a single oscillator is β1,2/α, see (2.8)).

The one-dimensional equation (4.10) has fixed points given by Eq. (4.7a). They exist when the
right-hand side in Eq. (4.7a) is less than 1. When this condition is fulfilled, Eq. (4.7a) gives two
values for stationary phase differences on the interval [0, 2π], one of them is always stable. The
latter corresponds to the synchronized solution. It exists at

ε � |β1 − β2|/2. (4.12)

Now we will use phase approximation to consider an oscillatory solution of Eqs. (4.4) that
corresponds to nonsynchronous oscillations of the coupled spin-transfer oscillators. Following the
ideas from [17, 23, 24], we consider the time-dependent amplitudes θ1,2 as a power series in ε,
restricting ourselves to the first-order terms:

θ1(t) = θ
(0)
1 + εθ

(1)
1 (t), θ2(t) = θ

(0)
2 + εθ

(1)
2 (t). (4.13)

Here the zero-order terms θ
(0)
1,2 correspond to the uncoupled oscillators and thus are constant, see

Eq. (2.9).
Substituting the expansion (4.13) into Eqs. (4.4b) and (4.4c) and equating terms of the same

orders in ε, we obtain the zero-order amplitudes as

cos θ
(0)
1 = Z1, cos θ

(0)
2 = Z2, sin θ

(0)
1 = Q1, sin θ

(0)
2 = Q2, (4.14)
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where

Z1,2 = hz − β1,2/α, Q1,2 =
√

1− Z2
1,2. (4.15)

For the time-dependent first-order terms we derive ODEs as follows:

(α2 + 1)θ̇
(1)
1 =− αQ2

1θ
(1)
1 −Q2 sinψ + αQ2Z1 cosψ − αQ1Z2,

(α2 + 1)θ̇
(1)
2 =− αQ2

2θ
(1)
2 +Q1 sinψ + αQ1Z2 cosψ − αQ2Z1.

(4.16)

Equations (4.16) are linear and independent of each other. They are nonautonomous because we

now assume that the phase difference ψ depends on time. The coefficients at θ
(1)
1,2 are negative, so

that there is no exponential growth and the solution can be found as

θ
(1)
1,2 = a1,2 cosψ + b1,2 sinψ + c1,2. (4.17)

Substituting it into Eqs. (4.16) and collecting terms at sinψ and cosψ, we obtain equations for the
coefficients a1,2, b1,2 and c1,2. These equations include time derivatives of ψ that can be obtained
after substituting (4.13) into Eq. (4.4a) and keeping only zero-order terms in ε (the other terms

will go to higher-order equations for θ
(n)
1,2 ):

ψ̇ = (β1 − β2)/α. (4.18)

Using this ψ̇, we can solve equations for the coefficients to obtain

a1 =
Q2[(Z2 − Z3

1 )α
2 − (Z1 − Z2)]

(Z1 − Z2)2(α2 + 1)2 +Q4
1α

2
, a2 =

Q1[(Z1 − Z3
2 )α

2 + (Z1 − Z2)]

(Z1 − Z2)2(α2 + 1)2 +Q4
2α

2
,

b1 =
αQ2[(Z1Z2 − 1)− Z1(Z1 − Z2)α

2]

(Z1 − Z2)2(α2 + 1)2 +Q4
1α

2
, b2 =

αQ1[(Z1Z2 − 1) + Z2(Z1 − Z2)α
2]

(Z1 − Z2)2(α2 + 1)2 +Q4
2α

2
,

c1 = −Z2/Q1, c2 = −Z1/Q2.

(4.19)

Now we turn to the equation for ψ: substitute the expansion (4.13) into Eq. (4.4a) while

keeping terms up to the first order in ε, and take into account solutions for θ
(0)
1,2 and θ

(1)
1,2, see

Eqs. (4.14), (4.15), (4.17), and (4.19). The resulting equation reads:

ψ̇ = δ1 −
√

ν21 + μ2
1 sin(ψ + γ), (4.20)

where

δ1 =2(β1 − β2)/α,

ν1 =ε
Q2

2Z1 −Q2
1Z2 +Q1Q2(Q2a2 −Q1a1)

Q1Q2(α2 + 1)
,

μ1 =ε
α(Q2

2 +Q2
1)−Q1Q2(Q2b2 +Q1b1)

Q1Q2(α2 + 1)
,

(4.21)

and γ = arctan(ν1/μ1).

Equation (4.20) is derived using θ
(1)
1,2, which in turn are obtained with the assumption that ψ

depends on time, see Eq. (4.18). Thus, Eq. (4.20) makes sense in the domain where it does not
have fixed points. Otherwise one of them will always be stable and ψ will arrive at it. This gives
the existence condition for a nonsynchronous solution:

δ21/(ν
2
1 + μ2

1) > 1. (4.22)

To obtain this condition explicitly, we substitute here (4.21) and solve it for ε. The resulting
expression is cumbersome, and below we provide its Taylor series expansion up to the third order
in frequency detuning β1 − β2:

ε < |β1 − β2|+ 8|β1 − β2|3
α2(1− 4h2z) + 4α(β1 + β2)hz − (β1 + β2)

2 + 1

[(2αhz − β1 − β2)2 − 4α2]2
. (4.23)
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One more condition for the nonsynchronized solution to exist is Z2
1,2 < 1:

−1 < hz − β1,2/α < 1. (4.24)

Otherwise Q1,2 becomes imaginary, see Eq. (4.15). We note that it coincides with condition (2.5),
which requires each separate oscillator to have a stable oscillatory solution.

To summarize, we have analyzed the fixed point and the oscillatory solution of Eqs. (4.4).
They correspond to synchronized and nonsynchronized regimes of the oscillators considered,
respectively. The ranges in ε of their existence obtained in phase approximation are represented
by inequalities (4.12) and (4.23). It can be shown that the numerator of the term at |β1 − β2|3
in (4.23) is always positive. On substitution of the average amplitude Z = hz − (β1 + β2)/α instead
of (β1 + β2) the numerator is reduced to −4Z2α2 + α2 + 1. This expression is positive at Z = 0

and becomes negative at Z =
√
α2 + 1/(2α). Since typically α ≈ 0.01, this value of the amplitude

is very large and physically irrelevant. Altogether this means that the areas of existence of the two
solutions overlap, i. e., there is a bistability of synchronous and nonsynchronous oscillations.

We note that, according to Eq. (4.17), θ1 and θ2 both depend on ψ, i. e., oscillate synchronously.
Thus, in the regime that we call nonsynchronousm1,2,x andm1,2,y components are not synchronized
since their phase difference ψ is nonstationary and m1,2,z oscillate synchronously.

5. NUMERICAL ANALYSIS

Figure 2 demonstrates numerical verification of the bistability. The color of the points in the
parameter planes 2a and 2b represents the density ρ of the trajectory’s initial points in the phase
space that end up at the synchronous regime. Figure 2a is plotted for a small vicinity near the
resonance point β1 = β2. Here the deep blue color in the lower part depicts an area where only
the nonsynchronized solution exists. A boundary of the bistability with the synchronized solution
is marked by dark green points above the deep blue area. The yellow dashed lines plotted in
accordance with Eq. (4.12) are in very good agreement with this numerically obtained boundary.
The numerically obtained upper boundary of the bistability in Fig. 2a is located on the lower edges
of the white tongue-like area. The theoretical formula for this boundary (4.23) overestimates it, see
the red dashed curves. The reason is that it was obtained only for the first-order approximation
in ε.

Figure 2b demonstrates wide ranges of parameters. We again observe the white tongue whose
tip is located at the point β1 = β2. Within this tongue there is only a synchronized solution. The
colored areas below it and above the deep blue points at the bottom correspond to bistability. The
white area in the right part represents the situation where the nonsynchronized solution does not
exist due to the violation of condition (4.24). We note that the theoretically predicted boundary
coincides with the numerical one for small ε. A better estimate could be obtained using higher-order
expansion in ε.

Figure 2c demonstrates the density ρ vs the coupling strength ε. We see that, when the
coupling is weak, the density is zero, ρ = 0. This means that no bistability occurs. All solutions are
nonsynchronous. When the coupling gets larger, the density becomes nonzero. This is the range
of bistability. Within this range 0 < ρ < 0.5. Then, when the density reaches the level ρ = 0.5, it
jumps up to ρ = 1. In other words, the bistability vanishes when one half of the initial points in
the phase space leads to the synchronized oscillation.

Figures 3a and 3b reveal basins of attraction of the synchronized and nonsynchronized solutions
of the system (4.1). As we discussed above, due to the norm preservation ‖�m1‖ = ‖�m2‖ = 1 and
because of the symmetry with respect to the z axis the system can be described by the three
ODEs for θ1, θ2 and ψ = φ1 − φ2, see Eqs. (4.4). We keep the initial ψ constant (the particular
value does not influence the qualitative picture) and start trajectories from points with various
θ1 and θ2. To distinguish the resulting solutions, we compute spans of z components along the
trajectories, Z1,2 = maxtm1,2,z −mintm1,2,z, and colorize points on the (θ1, θ2) plane according to
the sums Z1 + Z2 normalized by the maximum. The color bars in the panels of Fig. 3 confirm
that a colored scheme is used. Nevertheless, there are only two colors in the plots. This means
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Fig. 2. The density ρ of initial points leading to the synchronized solution. In panel (a) the colors encode
density values in a small vicinity of the point β1 = β2 and panel (b) shows wider ranges for β1 and ε. β2 = 0.004,
α = 0.01, hz = 0. In panel (a) the dashed yellow line “syn” marks the theoretical lower boundary of the area
where the synchronized solution exists, see Eq. (4.12). The dashed red line “no syn” marks an upper boundary
for the nonsynchronized solution as estimated by Eq. (4.23). (c) The density of initial points leading to
synchronized solution vs ε. The parameters are as above. Two values of β1 corresponding to the represented
curves are shown in the legend.

that only two solutions are observed. The synchronized solution corresponds to the black points
where Z1 +Z2 = 0 since, as discussed above, the z components do not oscillate in the synchronized
regime. Another solution is nonsynchronized and, regardless of the initial point, it always has the
same span of z components, Z1 + Z2 = const, so that all corresponding points are colored gray.

As one can see from Figs. 3a and 3b, if θ1 > θ2 only a nonsynchronized solution can appear (plain
gray area), and when θ1 < θ2 the basins of the two solutions are intermittent. (In these figures
β1 > β2, and if β1 < β2 the picture is transposed.) In more detail this is represented in Fig. 3c. The
basins of synchronized (black) and nonsynchronized (gray) solutions form diagonal stripes. When
the coupling strengthens, see Figs. 3b and 3d, the black stripes (synchronized) become wider, while
the gray ones shrink. Further increase in the coupling strength results in an abrupt switch of the
whole plane into black color, i. e., all starting points lead to the synchronized solution.

Now we consider examples of particular trajectories. Let us specify definite initial conditions for
the first and second oscillators as �m1,2(0) = �v1,2/‖�v1,2‖ where the vectors �v1,2 are selected without
taking care of their normalization. Two initial conditions will be considered:

�v1 = (0.1,−0.1, 0.9), �v2 = (−0.2, 0.2, 0.8), (5.1)

�v1 = (0.1,−0.2, 0.001), �v2 = (−0.1, 0.3,−0.002). (5.2)

Figure 4 is plotted for the initial conditions (5.1). The numerical solution is approximated very
well by the formulas (4.8) and (4.9). Components m1,z and m2,z do not oscillate and have the
same value mz = cos θ computed according to Eq. (4.8), see Fig. 4a. Components m1,2,x (as well
as the components m1,2,y that are not shown) oscillate synchronously. The black dashed sine curve
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Fig. 3. (a), (b) The sum of spans of z components Z1,2 = maxt m1,2,z −mint m1,2,z measured when the
trajectories emanate from different initial points: m1,2,x = sin θ1,2 cosφ1,2, m1,2,y = sin θ1,2 sinφ1,2, m1,2,z =
cos θ1,2, φ1 = 0, φ2 = 0.3π. The sums Z1 + Z2 are normalized by the maximum value. Color gradient is
employed for the drawing, however, one can see either zeros (black points) or ones (gray points). This indicates
that the system has only two different solutions, as in Figs. 4 and 5, respectively. α = 0.01, β1 = 0.0046,
β2 = 0.004, hz = 0. ε = 0.00045, and 0.001 for panels (a) and (b), respectively. (c), (d) Enlarged areas of the
panels (a) and (b), respectively, highlighted there by rectangles.

demonstrates that the synchronized m1,x and m2,x obey the pure sine law with the frequency ωs,
see Eq. (4.9). Figure 4b demonstrates dependence φ2 vs. φ1. The line crosses the right edge of the
square [0, 2π] × [0, 2π] exactly once and also it crosses the top edge once. This means that time
dependencies φ1(t) and φ2(t) have identical slopes, so that the oscillations are synchronized 1 : 1.
The vertical dashed line in Fig. 4b goes through the point where φ2 = 0, so that its distance to the
origin is equal to the phase shift ψ = ψ1 − φ2. Its value coincides with the one computed according
Eq. (4.7a).

Figure 5 is plotted with the same parameters as Fig. 4, but for the initial values (5.2). Unlike
the synchronous solution represented in Fig. 4, now the oscillations of x and y components are
not synchronized. Figure 5a illustrates it, showing the oscillations of m1,x and m2,x. Since we
consider here small coupling strength, the oscillations are very close to sinusoidal with frequencies
very close to the eigenfrequencies of the uncoupled oscillators, see (2.8). Thus, in Fig. 5b the time
dependences of the unwrapped phases φ1,2 are visually indistinguishable from straight lines. The
crosses in this figure are plotted according to the formulas ω1,2t. Components z oscillate now with
a small amplitude. These oscillations are described well by Eq. (4.13), (4.17). This is illustrated in
Fig. 5c where the numerical curve for θ1(t) is compared with the theoretical one.

Now we consider examples of parameter planes computed for the permanent initial points (5.1)
and (5.2). Two approaches will be used. The first one is based on counting passages of the phases
φ1,2 of the top and the right edges of the square [0, 2π] × [0, 2π]. The ratio of these numbers,
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Fig. 4. Synchronous oscillation in the system (4.1) at α = 0.01, β1 = 0.0046, β2 = 0.004 ε = 0.00045, hz = 0.
The initial values for �m1,2 are specified by Eq. (5.1). (a) Time dependencies of m1,2,x and m1,2,z. Components
m1,x andm2,x are synchronized andm1,2,z do not oscillate and coincide atm1,2,z = cos(θ) = −0.43 as predicted

by Eq. (4.8). The black dashed line is computed as
√

1− cos(θ)2 sin(ωst) where ωs = 0.43 is the frequency of
the synchronous oscillations according to Eq. (4.9). (b) Diagram of phases φ1,2. The line φ2 vs φ1 crosses the
right edge of the square [0, 2π]× [0, 2π] only once and it crosses the top edge also only once. It indicates 1 : 1
synchronization. The vertical dashed line is drawn through the point where φ2 = 0, so that the corresponding
φ1, i. e., the distance between the vertical axis and the dashed line is equal to the phase difference ψ = φ1 − φ2.
Exactly as predicted by Eq. (4.7a), it is equal to 0.73.

so called winding number, indicates the resonance, i. e., the synchronization m : n. The second is
based on computing Lyapunov exponents spectra at each point of the parameter plane. Totally the
system (4.1) has six Lyapunov exponents. But since it preserves the norms of �m1,2 two of the them
are always zero. Presence of the positive exponent would indicate chaos, but this is not the case for
our system. Situation λ1,2 = 0 and λ3,4,5,6 < 0 indicates fixed point, λ1,2,3 = 0 and λ4,5,6 < 0 mean
periodic oscillation and configuration λ1,2,3,4 = 0 and λ5,6 < 0 is observed when the oscillations are
quasi-periodic, i. e., the subsystems 1 and 2 are not synchronized.

Figure 6 represents regimes of the system (4.1) in a close vicinity of the point β1 = β2. Figures 6a
and 6b are the regime charts where the colors indicate winding numbers. For all chart points the
same initial conditions are used: those given by (5.1) are used in Fig. 6a and Eq. (5.2) corresponds
to 6b. We observe that due to the bistability the charts have different structures. Dashed straight
lines marks theoretically predicted boundaries of the bistability area.

Figures 6c and 6d are the Lyapunov exponents charts corresponding the the regime charts above.
The initial conditions are again (5.1) and (5.2), respectively. Both regime charts and Lyapunov
exponents chart have identical structures that confirms correctness of our computations.

Only two regimes are observed, synchronous and nonsynchronous ones, whose examples are
represented in Figs. 4 and 5, respectively. The parameters corresponding to these figures are
marked by the black cross in Figs. 6a and 6b. The synchronous oscillations are denoted as “1 : 1”
in Figs. 6a and 6b and “P” in Figs. 6c and 6d. This means that we have here periodic oscillations
when the oscillator frequencies are equal. Charts for the initial condition (5.1) in Figs. 6a and 6c
contain tongue-like strictures of synchronized oscillations whose lower tips are anchored at the lower
boundary of the bistability area. This is because the synchronized solution does not exist below this
line. We note that all these tongues correspond to 1 : 1 synchronization. Nonsynchronous oscillations
are denoted as “NP” in the regime charts, Figs. 6a and 6b. In actual computations this means that
the computed winding number for them includes large integers. In the Lyapunov charts these areas
exactly correspond to the areas “2T”. This means a two-frequency torus, i. e., a quasi-periodic
regime. We have to notice that the true quasi-periodicity in a strict mathematical sense appears
only when the frequency ratio is an irrational number. Obviously, not every point in the “2T”
areas fulfills this condition. For some of them the frequency ratio is actually rational and hence
the oscillations are actually periodic. However, the period is very large and the oscillations are
indistinguishable from the quasi-periodic ones in numerical simulations without special efforts.

The characteristic feature of the charts in Fig. 6 is their simplicity. Typically on the plane of
frequency detuning vs coupling strength there is a structure of tongues anchored at the points
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Fig. 5. Nonsynchronous oscillations of the system (4.1) with the same parameters as in Fig. 4, but for the
initial values (5.2). (a) Time dependencies of m1,2,x. Observe different frequencies of the oscillations. (b) The
solid lines are unwrapped phases φ1,2. Crosses are plotted according to the formulas ω1,2t where ω1,2 are
the eigenfrequencies of the uncoupled oscillators, see Eq. (2.8). The coincidence of the crosses and the lines
indicates that the subsystems’ frequencies are very close to their eigenfrequencies. (c) Time dependence of θ1
computed numerically and according to Eqs. (4.13), (4.17). Observe high correspondence of the curves.

where the frequencies ratio is rational, for example, 1 : 2, 1 : 3, or 2 : 3. These tongues emerge due
to the effect of phase locking and are usually called Arnold tongues [25]. In our case, however, the
phase locking only occurs at 1 : 1. No phase locking of higher harmonics is observed. As we have
already noticed above, this is due to the absence of terms nonlinear in the components mx and my

in equations for a single oscillator, see Eq. (2.2).

Figure 8 shows charts for wider parameter ranges. Still no complicated structure of Arnold’s
tongues is observed here. One can find only two regimes described above. Those tongue-like areas
in Figs. 6a and 6c of synchronous oscillations anchored at the lower boundary of the bistability
area are developed in Figs. 8a and 8c into patterns that look like papillary lines. These patterns
appear due to the bistability. All chart points are computed for the fixed initial conditions (5.1).
When the parameter values vary as the chart is scanned, this initial point falls either to the basin
of the synchronous or nonsynchronous solution. Thus, the pattern appears.

To clarify it better, Fig. 8 shows the dependence of the three nontrivial Lyapunov exponents
λ4,5,6 vs β1. (We recall that, due to the amplitudes ‖�m1‖ = ‖�m2‖ = 1 being preserved, two of six
exponents are always zero, and one more is zero since the system (4.1) is autonomous.) These curves
correspond to motion along the horizontal line along the charts in Fig. 8 at ε = 0.01. Figure 8a
is computed for the case where the trajectories are started from the initial point (5.1). Jumps of
the curves in the right part of the figure correspond to papillary patterns in Fig. 8. One can see
that the jumps can be treated as switching between two smooth curves. To reveal these curves
explicitly, we plot Fig. 8b in the following way. The leftmost point is computed for the initial
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Fig. 6. Regimes of the coupled system (4.1) in a small vicinity of the point β1 = β2. β2 = 0.004, α = 0.01,
hz = 0. (a), (b) Synchronization charts computed as counts of edges crossings of the square [0, 2π]× [0, 2π]
by the phase φ1,2, see the explanation of Fig. 4b. Initial values for the charts (a) and (b) are (5.1) and (5.2),
respectively. The black dashed lines mark the boundaries of the bistability area as predicted theoretically, see
Eqs. (4.12) and (4.23). The black cross corresponds to Figs. 4 and 5. The labels are: “NP” — nonperiodic,
“1 : 1” — synchronization. (c), (d) Lyapunov exponents charts. The labels are: “P” — periodic oscillations,
“2T” — two-frequency torus.

conditions (5.1), and all subsequent points when moving to the right are computed for the case
where a trajectory starts from the previous trajectory’s end point. One observes the transition
to a synchronous periodic regime when λ4 becomes negative and then this solution undergoes no
transformations. The exponents λ4 and λ5 coincide in this area due to the full synchronization of
the oscillations: both their frequencies and amplitudes are the same, see the example in Fig. 4.
The second solution is shown in Fig. 8c. No inheritance is used here, all trajectories start from the
initial condition (5.2). This solution undergoes a transition to the synchronization in the left part
of the curves that corresponds to the synchronization tongue in Fig. 8. Moreover, near the point
β1/α = 1 one observes a scenario typical of the Neimark-Sacker bifurcation [26, 27]. While moving
from right to left, one observes first a periodic solution. For this solution λ4 = λ5 and both of them
are negative. Then they approach zero and then only λ5 becomes negative again. In Figs. 8c and 8d
the line of this bifurcation is highlighted in black.

6. CONCLUSION

The spin-transfer oscillator model is three-dimensional and describes the precession of a
magnetization vector. The length of this vector remains constant, so that the dynamics occurs on a
sphere and thus is effectively two-dimensional. The generic spin-transfer nanooscillator is described
by the Landau –Lifshitz –Gilbert – Slonczewski equation that has a fairly complicated form. In this
paper we consider its particular case when the oscillator design is symmetric with respect to the z
axis. In this case the governing equations are simplified dramatically, but nevertheless the system
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Fig. 7. Same as Fig. 6 for wider ranges of β1 and ε. In panels (c) and (d) the black thin areas labeled as “NS”
indicate the threshold of the Neimark – Sacker bifurcation.

remains physically relevant. When the oscillator is uniaxial, the established oscillations occur along
a circle of latitude parallel to the x-y plane, while the component z remains constant. Its interesting
feature is that on the limit cycle the governing equations are linear in the oscillating components
x and y. For a single oscillator this means that oscillations are purely sinusoidal without higher
harmonics.

In this paper we analyze how this effective linearity manifests itself when two such oscillators are
coupled via a magnetic field. Using the phase approximation approach, we reveal that the system
can exhibit bistability between synchronized and nonsynchronized oscillations. For the synchronized
one the Adler equation is derived, and the estimates for the boundaries of the bistability area are
obtained. The basins of attraction of the two coexisting solutions are analyzed numerically. Their
two-dimensional slices consist of fairly thin parallel stripes, so that a small variation of the initial
conditions may result in the switch between synchronized and nonsynchronized oscillations.

The charts of regimes and the charts of Lyapunov exponents are computed numerically. The
parameter space of this system has very simple structure. Due to the above-mentioned effective
linearity there are no higher resonances. Only synchronization with frequency ratio 1 : 1 is observed,
while any other phase locking with a winding number m : n, m > 1 and/or n > 1 never appears.
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Fig. 8. Lyapunov exponents λ4,5,6 vs β1. All parameters are as in Fig. 6, ε = 0.01. (a) The initial
conditions (5.1). (b) The initial conditions (5.1) for the leftmost point, then inheritance of the initial conditions
from left to right. (c) The initial conditions (5.2).
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