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Critical velocity for the onset of fast Fermi acceleration
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One of the well-known effects in nonlinear science is Fermi acceleration that is the unlimited
growth of the velocity of a particle when it collides with oscillating walls. It is rather common
for time-dependent billiard-like systems in which a particle moves inside a closed oscillating
boundary and elastically collides with it. But if the oscillations are weak, more complex effects
may arise in the system. Earlier one of these effects was shown for time-dependent stadium-
like billiard. In the case of a weak boundary oscillation the red particle’s velocity grows if
its initial value is greater than a certain critical value and tends to the limit otherwise. We
consider the dynamics of a particle moving between two planar and harmonically corrugated
walls and colliding elastically with them. We tried to find a similar effect and revealed that the
ensemble-averaged velocity grows rapidly if the initial velocity is larger than some critical value.
Otherwise, the ensemble-averaged velocity grows much slower and the velocities of all particles
tend to become equal. We numerically estimated the band of the oscillation amplitude in which
this effect exists and illustrated the dependence of the behavior of the critical initial velocity on
various parameters.
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1. Introduction

The classical billiard is the dynamical system of a particle or an ensemble of non-interacting parti-
cles which move inside a closed boundary and elastically collides with it. Billiards are a popular type of
conservative dynamical systems demonstrating both regular and chaotic dynamics which are well studied
nowadays [Sinai, 1970], [Bunimovich, 1974], [Bunimovich, 2001], [Chernov & Markarian, 2006], [Loskutov,
2007], [Zaslasvsky, 2008].

If we let the billiard’s boundary oscillate, its dynamics can change drastically because the velocity
of a particle is not constant then. It is known that if the dynamics of a billiard with fixed boundaries
is chaotic then in the case of the oscillation boundaries the Fermi acceleration (the unlimited growth of
the ensemble average velocity) [Fermi, 1949] appears [Gelfreich & Turaev, 2008], [Dettmann, 2018]. The
phenomenon of Fermi acceleration in time-dependent billiards and other systems with elastic collisions of a
particle and a moving wall is studied in a number of papers both theoretically [Gelfreich & Turaev, 2008],
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[Gelfreich et al., 2014], [Dettmann, 2018], and numerically [Oliveira & Gonsales, 1997], [Karlis et al., 2006],
[Oliveira & Poschel, 2013], [Castaldi et al., 2014], [Hansen et al., 2019]. The theory of Fermi acceleration
in chaotic time-dependent billiards was developed in a series of papers such as [Batistic & Robnik, 2011],
[Batistic, 2014-1], [Batistic, 2014-2] and it was shown that Fermi acceleration occurs if the static billiard
demonstrates chaotic dynamics. Also it was shown [Lenz et al., 2008] that Fermi acceleration occurs in an
elliptic billiard which is regular in the static case.

However, it was shown [Livorati et al., 2012] that the stickiness of the regular island boundaries, well-
known for affecting the diffusion in the Hamiltonian systems [Zaslasvsky, 2008], [Manos & Robnik, 2014],
[Moges et al., 2022], can decrease Fermi acceleration. A similar interesting phenomenon exists in some
types of billiards which have both chaotic and regular regions in the phase space. Provided we take an
ensemble of particles with the equal values of the initial velocity then its average velocity grows if this
velocity is larger than some value and diminishes if it is less than that value. This phenomenon is described
in [Livorati et al., 2012] for a stadium-type billiard with the oscillating boundaries and is called a peculiar
Maxwell’s Demon there.

In this paper we reveal the similar phenomenon that exists in another billiard-like system which is the
corrugate waveguide [Tennyson et al., 1980] with the oscillating boundary. It is well known [Lichtenberg &
Lieberman, 1983] that there are areas of chaotic and regular dynamics in this system without oscillations.
We study the dependence of the ensemble-averaged velocity on time for different parameters. We reveal
that at some parameters the ensemble-averaged velocity grows fast if the initial velocity is larger than some
values called ”critical initial velocity”. Otherwise, the ensemble-averaged velocity grows much more slowly
and the velocity of all particles tends to become equal. We refer to the first case as fast Fermi acceleration
and to the second case as slow Fermi acceleration. We numerically estimate the band of the boundary
oscillation amplitude value in which this effect exists and the dependence of critical initial velocity on the
parameters.

2. The model description

Consider a system in which a particle moves between two boundaries and elastically collides with them.
One boundary is fixed and set by the equation:

y1 = 0. (1)
The other boundary is corrugated and can oscillate harmonically. Then its equation is:
y2 = F(x,t) = bcoskx + acoswt + h (2)

In “Eq. (2)” a — the oscillation amplitude, b — the corrugation amplitude, h — the average distance
between the boundaries.

The model is mechanical and it is not difficult to obtain expressions for wv,y1, i1, Tnt1,%0,4,
( “Fig. 1”7) in the case of the weak amplitudes of the corrugation and the oscillation. We consider the
static boundary approximation, which means that we assume the position of the upper boundary fixed
although its velocity changes with time. This approximation is often used [Livorati et al., 2012], [Livorati
et al., 2014], [Palmero et al., 2018] as it allows to obtain an explicit map. The discussion of the possible
effect of this approximation is given in the conclusion. So, these expressions form the 4D map:

_ 2 2 .
Un+1l = \/ Upt1, T Unt1,s

Un+1
o = arctan ——%;
n+1 Unt1, ) (3)
_ Untlg .
Tnt+l = Tn + Qh#,
Yy
_ 2h
t0n+1 - tOn + vn+1y N

In “Eq. (3)": vpy1, = vpsin (ap + 27) — 2yu, vnt1, = vn cos (an +27) — 2u, u = —aw sinwty,,,
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Fig. 1. Illustration of the particle movement between two boundaries. £, — the coordinate of the n-th collision with the upper
boundary; ay, — the angle between the normal to the bottom boundary and the velocity vector at the moment of the n-th
collision vn; vn — the particle velocity at the moment of the n-th collision with the upper boundary; tg, — the elapsed time
from the moment the particle begins to move until the moment of the n-th collision with the upper boundary.

~ = —kbsin kx,. The number of the parameters can be reduced via the following replacement:
On = kiy;
Y = wi,;
Ung,y .
Q= 2hwy’ ( 4)
A = 2hk
B=7
C = bk

It results in the 4D map with four parameters:

Dt = /D, + D,

Q
Q41 = arctan LQ"HI}

)
Pnt1 = Pn + Agr =
Ynt1 = Y + inﬂy

In “Eq. (5)”: Quy1, = Qusin(an +27) — 2yu, Quq1, = Qucos(a, +27) — 2u, v = —Csing,,u =

—Bsin ¢y, ), — the dimensionless velocity, ¢, — the dimensionless coordinate, 1, — the dimensionless
time, A — the dimensionless average distance between the boundaries, B — the dimensionless oscillation
amplitude, C' — the dimensionless corrugation amplitude.

Consider a degenerate situation when the top boundary is fixed (B = 0). In this case v = 0 and the
velocity does not change over time. Then system “Eq. (5)” is reduced to the two-dimensional map:

Qn+1 = an — 2C'sin ¢y, (6)
Pnt1 = On + Atan a1

The resulting system is the restricted case of well-known Tennyson-Lieberman-Lichtenberg map [Ten-
nyson et al., 1980], [Lichtenberg & Lieberman, 1983]. The structure of the phase space is typical for
non-integrable two-dimensional Hamiltonian systems. They have the regular trajectories that are quasi-
periodic (KAM) tori and the chaotic ones that are destructed tori. The structure of the system’s phase
space in a small range of the parameters is to be considered. The parameters’ variation is small because
we are interested in the phenomena which occur in the case of the weak nonlinearity. It must be kept
in mind that phase space structure can change significantly if a larger range of the parameters’ change is
taken. In “Fig. 2” the way the phase space structure is transformed depending on the boundary corrugation
(parameter (') is shown. In fact, parameter C' is the nonlinearity parameter because if it is increased, the
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number of the destroyed tori grows. In “Fig. 3” the way the phase space structure is transformed depend-
ing on the distance between the boundaries (parameter A) is shown. It can be seen that if this parameter
is changed, the phase space does not vary topologically but the size of chaotic region and the stability
islands changes. We choose the parameters A = 2 and C' = 0.05 which correspond to the case of the weak
corrugation (C' < A) for futher simulation.

Fig. 2. Phase portrait of the system “Eq. (6)” with the parameters: A =2 and C = 0.05 (a); C = 0.1 (b); C = 0.3 (¢).
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3. The dynamics of ensemble-averaged velocity

Let us consider the system which is given by “Eq. (5)”. The evolution of the projection of the tra-
jectories of the ensemble of initial conditions on (¢, «)-plane is shown in “Fig. 4”. We use the ensemble
of 4410 initial conditions with the same initial velocity (£2) and different initial values of other variables
that were selected on the cubic lattice in the chaotic region (¢¢ € [0;3], ap € [0.357;0.47]), %0 € [0;3]). It
is known that if a trajectory is chaotic then its largest Lyapunov exponent (LLE) is larger than zero. We
calculate LLE for each initial condition of the ensemble for the situation when B = 0, they are positive in
most cases and their average value A = 0.98. As we can see in “Fig. 4a”, in this case the initial conditions
are both in the chaotic and in the regular regions. For B = 0.01 LLE is positive for all initial conditions,
its average value A = 1.23 and “Fig. 4b” shows that the chaotic region becomes larger than at B = 0. For
B = 0.03 ( “Fig. 4¢”), we can still see stability regions, however, the chaotic trajectories penetrate into
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Fig. 4. Phase portrait of the system “Eq. (5)” with the parameters: A =2,C = 0.05 and B =0 (a); B =0.01 (b); B =0.03
(¢).

them due to the Arnold’s diffusion [Arnol’d, 1964]. We did not consider the projection of the phase space
on (¢, Q) because individual structures cannot be seen on it.
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Fig. 5. Dependence of the ensemble-averaged velocity after 2.000.000 iterations (€25,106) of “Eq. (5)” with the parameters
A =2,C = 0.05 on the oscillation amplitude. The color of a curve shows the initial velocity g, whose values are in the figure.

Then we try to find the region where Fermi acceleration can be observed starting from a certain value
of the initial velocity. To achieve this we build the plots of the ensemble-averaged velocity after 2.000.000
iterations (€9,106) of “Eq. (5)” on the oscillation amplitude B at different initial velocities ( “Fig. 57). It
can be seen that three curves (9 = 0.1,Qy = 1.0,Q¢ = 1.5) are very close for B between 0.01 and 0.04.
They begin to increase rapidly starting from a certain value of the amplitude whereas other curves are
always located above them. It can be assumed that there is a region of the oscillation amplitude in which
particles whose initial velocity is below a certain value begin to move with a common velocity. If the initial
velocity of the particles is higher than this value, they accelerate. Furthermore, from this overlapping part
we can estimate the domain of the amplitude of oscillations where the movement with a common velocity
can be observed.

Now we consider the different points of the proposed domain. The plot of the average velocity on the
number of iterations of the system “Eq. (5)” is shown in “Fig. 6”. To make sure that there are enough initial
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Fig. 6. Dependence of the ensemble-averaged velocity on the number of the iterations of the system “Eq. (5)” with different
initial ¢o, %0, ag selected on the cubic lattice in the chaotic region: A =2,C = 0.05 and B = 0.01 (a); B =0.03 (b); B =0.05
(¢); B = 0.07 (d). The initial velocity Qg is taken in the range from 0.5 to 2.3 in increments of 0.2. The color of the curve
depends on the number of the initial conditions: blue — 4410, red — 10140.

conditions (4410) to draw some conclusions we increase the number of the initial conditions to 10140. In
Fig. 6 the data for 10140 initial conditions (red curves) coincide with the data for 4410 ones (blue curves).

For B = 0.01 ( “Fig. 6a”) and B = 0.03 ( “Fig. 6b”) it can be observed that the graphs with the
initial velocity below the certain critical value tend to the common velocity. The trajectories with initial
velocity larger than the critical value grow with the number of iterations. In fact, the common velocity is
not a constant; it slowly grows with the number of iterations. The differences between these graphs are in
the values of the common and critical velocities and also in the velocity growth rate with the same initial
velocity. At B = 0.05 ( “Fig. 6¢”) and B = 0.07 ( “Fig. 6d”) a similar situation is observed. However,
the common velocity perceptibly increases with the number of iterations. We can state the following, more
important, conclusions by analyzing these plots. First, the data for 10140 initial conditions well matches the
data for a fewer number of the initial conditions in the ensemble and the number of 4410 initial conditions
is sufficient for the statistical analysis of the system. Second, the critical value of the initial velocity appears
in the system for the certain values of the parameters and trajectories which have the initial velocity below
this value tend to the same common velocity. Third, there is the domain of parameter B where the common
velocity slowly increases with time. It can be assumed that in this situation trajectories that move with a
common velocity have slow Fermi acceleration and trajectories which have the initial velocity above the
critical one have fast Fermi acceleration.

In order to see the differences in particle velocity growth at different initial velocities, we plot the
difference (AQ) of the ensemble-averaged velocities after 3.000.000 iterations and 2.000.000 iterations
(actually, it is averaged acceleration) depending on the initial velocity at different parameter B ( “Fig. 7).
The ensemble consists of 4410 initial conditions as described above. In “Fig. 7a” this dependence for
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Fig. 7. Dependence of the difference between the ensemble-averaged velocity after 3.000.000 iterations and 2.000.000 iterations
(AQ) of the system “Eq. (5)” (in fact, it is acceleration) on the initial velocity for different values of the oscillation amplitude
B which are shown in the figure. Parameters: A = 2,C = 0.05 (a); A = 3,C = 0.05 (b); A =2,C = 0.06 (c).

parameters A = 2,C = 0.05 with different B is shown. The values of parameter B are displayed in the
figure. It can be seen that for B = 0.01,0.03,0.05 the curves have a horizontal segment that is close to
zero followed by the increasing segment. The A2 remains nearly constant for large 9. For B = 0.07 it
is difficult to divide the curve into some stages due to the large spread of the acceleration values. We
made a linear approximations of the horizontal and the increasing parts of the curves (see Fig.7a for
example), and estimate the critical velocity as the intersection point of these lines. In “Fig. 7b” a graph
for A = 3,C = 0.05 is shown. There are no qualitative distinctions from “Fig. 7a”, however, the absolute
values of the accelerations are different. At parameters A = 2,C = 0.06 ( “Fig. 7¢”) the curve for B = 0.07
has an area where the acceleration decreases with the increase of the initial velocity.

Now let us calculate the range of the parameter B in which we can observe slow and fast Fermi
acceleration. We plot the dependence of AQ2 on the horizontal segment (for example, its value at 5 = 1.0)
on the amplitude of the boundary oscillations ( “Fig. 8”) for that. The curves are plotted for different
values of the parameters A and C. For B less than 0.07 these plots are well approximated by an expression
AQ = ae®B 4+ b, where a, b, ¢ are constants specific for each curve. We use this fact to estimate the ”critical”
value B, that is the value at which A2 becomes e times larger than its value at B = 0.01. We assume
that there is no separation into fast and slow Fermi acceleration when the amplitude of the boundary
oscillations is greater than B,,. The results of the calculation B, by this method are shown in “Table 1”.
It can be seen that the value of B, decreases with the increase of the parameters A and C.

Another issue worth considering is the dependence of the critical velocity on the oscillation amplitude.
“Fig. 9a” shows it for different values of the parameters A and C. The curves seem to be rather similar. The
parabolic approximations of the data are plotted in “Fig. 9b”. It can be seen that critical velocity does not
exceed 2.0 for all curves at B € (0; Be,) (B, is different for each curve). Somewhere with B ~ 0.024, the
values of the critical velocities have a minimum spread of values for different parameters. Before B ~ 0.05,
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Fig. 8. Dependence of the value of the horizontal section on parameter B of the system “Eq. (5)” on a logarithmic scale for
different parameters A and C' whose values are shown in the figure.
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Fig. 9. Dependence of the critical velocity on the boundaries oscillations amplitude of the system “Eq. (5)” for different
parameters A and C whose values are shown in the figure. (@) The numerical data; (b) the approximations.

Table 1. Dependence of B¢y on
different parameters A and C.

A C Ber

2.0 0.05 0.041
1.5 0.05 0.043
3.0 0.05 0.023
2.0 0.04 0.063
2.0 0.06 0.028

the values of the critical velocities are greater than 1.5. At B ~ 0.06, some curves have a large calculation
error due to the fact that the linear growth area becomes smaller ( “Fig. 7”), and the curve’s spread
becomes larger. Therefore, it is incorrect to determine the critical velocity for curves which have B > B,,.

4. Conclusion

The research shows numerically that the system of Tennison-Liechtenberg-Lieberman with weak oscil-
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lating boundary demonstrates the ”classical” or fast Fermi acceleration only if the initial velocity is higher
than some critical value. Otherwise, the velocity for different trajectories tends to the common value which
increases gradually with time. We refer to this situation as slow Fermi acceleration. This effect is similar
but not identical to the the Maxwell’s Demon in billiard [Livorati et al., 2012]. We assume that this effect
may occur because both focusing and scattering elements of the boundary exist in the system unlike the
stadium-like billiard. The transition from slow to fast Fermi acceleration is smooth: the acceleration expo-
nentially depends on oscillation amplitude, so the critical velocity is well determined only for rather small
amplitude (up to B ~ 0.05). It should be marked that the velocity of different trajectories with initial
velocity less than the critical one tends to the same value. This effect seems to be similar to the effect
in the Ulam system [Ulam, 1961]. It is known [Zaslavsky & Chirikov, 1964] that in the Ulam system the
invariant KAM-tori exist at the large values of velocity and prevent the acceleration. We suppose that in
the system the common velocity increases gradually due to the Arnold diffusion. Also it is interesting that
the acceleration can diminish (for example, “Fig. 7¢”) and we think this effect deserves further research.

Another question to be discussed is whether the approximations made in the considered system affect
the studied phenomenon significantly. We assume that it is unlikely due to the following reason. The error
of the static wall approximation is negligible if the wall does not move significantly while the particle
travels between the collisions. In our case the approximate value of the dimensionless critical velocity is 2,
so the correction is to be of the same order of magnitude as % which is less than 1 percent. We assume
that it does not affect the studied dynamics significantly. Also, we did not take into account the cases
of repeated collisions inside the focusing part of the boundary in contrast to the work of Livorati and
Loskutov [Livorati et al., 2012]. It does not affect the discussed phenomenon because the angle a should
be small for the repeated collisions to take place but in the chaotic area « is close to 7.
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