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Abstract

We study the complex dynamics of a discrete analogue of the clas-
sical flow dynamical system - Rössler oscillator. Minimal ensembles
of two and three coupled discrete oscillators with different topolo-
gies are considered. As the main research tool we used the method
of Lyapunov exponents charts. For coupled systems, the possibility
of two-, three- and four-frequency quasi-periodicity is revealed. Il-
lustrations in the form of Fourier spectra are presented. Doublings
of invariant curves, two- and three-dimensional tori are found. The
transition from two-dimensional tori to three-dimensional ones occurs
through a quasi-periodic saddle-node bifurcation of invariant tori or
through a quasi-periodic Hopf bifurcation. A discrete version of the
hyperchaotic Rössler oscillator is also discussed. It exhibits dynamical
behavior close to a flow system in some measure.

Keywords: Rössler system, discrete map, Lyapunov exponent, quasi-
periodicity, chaos, hyperchaos
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1 Introduction

As we well know, two classes of dynamical systems are distinguished: contin-
uous that described by differential equations (flows) and discrete described
by iteration equations (maps). Maps arise at the study of a flow system by
the method of Poincaré sections, mainly in numerical analysis. For certain
systems they can be built from the initial principles, for example, in the case
of an impulsive action on the system [1]. However, another method is pos-
sible, which goes back to the first studies in the field of nonlinear dynamics.
It consists in the discretization of differential equations by replacing time
derivatives with finite differences [2-4]. The resulting model can be consid-
ered as an independent dynamical system. Generally, its dynamics is more
complex and diverse than the dynamics of prototype flow system, although
it inherits some of its properties. For example, a map can be non-invertable,
and even for one-dinesional map chaos can occur; 2D map can demonstrate
hyperchaos and singular Shilnkov discrete attractors [5]. Besides, an addi-
tional control parameter as the discretization step appears. Moreover, maps
are much easier to study than flows. We should remark that at considering
the results of numerical simulation, we also deal with a certain map, because
numerical integration is a discretization with high accuracy. A similar situ-
ation can be in physical experiments, when as a result of measurements we
have got discrete time series. In recent papers [5-7] one can see the results for
maps of simulated neuron behavior, which can generate time series typical
for neuron flow model, and for experimental time series. Another area where
discretized flows can be useful is the implementation of a system on micro-
controllers. Microcontrollers work with recursively specified memory cells,
so a simple discrete model is needed to program an flow dynamical system
to FPGA [8,9]. That is why it is important to investigate discretized flow
dynamical systems.

Discretization allows us to introduce a variety of interesting examples. So
this procedure can be subjected to equations of realistic systems. For exam-
ple, discrete versions of predator–prey population dynamics [10], the simplest
gene networks [11,12], the Lorentz-84 climate model [13], the Kislov-Dmitriev
radiophysical generator [14], an autonomous generator of quasi-periodic os-
cillations [15] were constructed and studied. Not only realistic systems can
be discretized, but also basic models of the oscillation theory and nonlinear
dynamics. Thus, discrete versions of a nonlinear pendulum [2], a van der
Pol oscillator [16,17], a hard-excited autogenerator [18], Bogdanov oscilla-
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tor (a standard model with Bogdanov-Takens bifurcation) [19,20], a system
of coupled phase oscillators (Kuramoto model) with a different number of
oscillators [21-25] were considered. In this context, it is logical to consider
another basic system of nonlinear dynamics - the Rössler system [26]. This is
the subject of the present paper. Combining such models into some networks
or chains can provide new opportunities for studying phenomena of synchro-
nization and conditions for complicating dynamics [27,28]. Note that a pre-
liminary study of the discrete Rössler oscillator was carried out in Ref. [29].
Here we will develop and supplement the corresponding results. We consider
both the traditional version of the three-dimensional Rössler system [26] and
its four-dimensional version [30], which demonstrates hyperchaos.

The paper is structured as follows. In Section 2 we examine three-
dimensional discrete Rössler system. We shortly describe principle of dis-
cretization of flow systems and study dynamical regimes characteristic for
this model. Then we consider ensembles of two and three coupled discrete
Rössler oscillators. For three coupled systems we investigate the features
of dynamical regimes picture depending on the coupling topology: chain vs
ring. In Section 3 we present the results obtained for discrete hyperchaotic
Rössler system. In Section 4 we provide main results and conclusions.

2 Three-dimensional Rössler system

2.1 Individual discrete oscillator

The classical Rössler system has the following form [26]

ẋ = −y − z,
ẏ = x+ ay,
ż = b+ (x− r)z.

(1)

Here x, y, z are dynamical variables, a, b, r are parameters. Let us apply
the discretization procedure to system (1), i.e., we replace the corresponding
derivatives with finite differences

dx

dt
→ xn+1 − xn

ε
,

dy

dt
→ yn+1 − yn

ε
,

dz

dt
→ zn+1 − zn

ε
, (2)

where ε is the discretization parameter. We obtain the following map, namely
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a discrete Rössler oscillator:

xn+1 = xn − ε(yn + zn),
yn+1 = yn + ε(xn + ayn),
zn+1 = zn + εb+ ε(xn − r)zn.

(3)

Figure 1 shows a Lyapunov exponents chart of the system (3) on the
plane of the parameters of the Rössler system (a, r) for a fixed value of
the third parameter b = 0.2. Lyapunov exponents Λ were calculated using
standard algorithms proposed in [31] and Gram-Shmidt orthogonalization.
We consider trajectories of length 105 time units. To construct a chart of
Lyapunov exponents, we take a threshold for determining zero, for |Λ| <
Θ we assume that it is equal to zero. For our numerical experiment, the
threshold was fixed at Θ = 10−4. The cases of a relatively small discretization
parameter ε = 0.1 (a) and its large value ε = 1 (b) are presented. The type
of regime was determined by the spectrum of Lyapunov exponents Λi:

• P means a stable fixed point or periodic regime (all exponents are
negative Λ1,2,3 < 0),

• 2T means a closed invariant curve - a two-frequency quasi-periodic
regime (one zero exponent Λ1 = 0, Λ2,3 < 0),

• C means a chaos (one exponent is positive Λ1 > 0, Λ2,3 < 0),
• H means a hyperchaos (two positive exponents Λ1,2 > 0, Λ3 < 0),
• D means escape of trajectories to infinity.
Note that in continuous-time systems, two-frequency quasi-periodicity is

associated with an invariant torus, the Poincaré section of which is an in-
variant curve. Therefore, for discrete maps the invariant curve regime is
sometimes called a torus, see for example [32,33]. Such a regime can also be
called a two-frequency torus in accordance with the number of incommensu-
rable frequencies.

It can be seen that for a small value of the discretization parameter,
both periodic and quasi-periodic regimes are possible in the system. In this
case, the region of quasi-periodic dynamics is quite homogeneous: windows
of resonant periodic regimes are not visually observed. For large values of the
parameter ε in the area of quasi-periodic dynamics, one can see a conspicuous
structure of Arnold’s tongues (Fig. 1b).

Figure 2 shows examples of phase portraits of the discrete Rössler os-
cillator. In case (a), one can see a closed invariant curve (a two-frequency
torus). As the parameter a increases, this curve undergoes a period-doubling
bifurcation (b). Then the invariant curve loses its smoothness (c) and chaos
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Figure 1: Lyapunov exponents chart of the discrete Rössler oscillator (3) for
b = 0.2; ε = 0.1 (a) and ε = 1 (b).

arises (d, e, f). For convenience, next to each Figure, the value of the largest
Lyapunov exponent Λ1 is indicated.

Figure 2: Attractors of the discrete Rössler oscillator, r = 9, b = 0.2, ε = 0.1.
Values of parameters a are: (a) a = −0.02, (b) a = 0.04, (c) a = 0.0946,
(d) a = 0.0976, (e) a = 0.1017, (f ) a = 0.1042 . The value of the largest
Lyapunov exponent Λ1 is indicated.

The constructed system is a three-dimensional map. General properties of
such discrete models are discussed in Ref. [34]. Note that such maps attract
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attention in the context of the possibility of various types of chaotic attractors
and doubling bifurcations of invariant curve [35-40]. At the same time, a
three-dimensional generalization of the Hénon map is mainly investigated.
Therefore, it is useful to replenish the collection of three-dimensional maps.

2.2 Two coupled discrete oscillators

Consider now two coupled discrete Rössler oscillators. Let us introduce the
coupling between them by analogy with the continuous model [41-44]:

xn+1 = xn − ε(yn + zn),
yn+1 = yn + ε(xn + a1yn) + εµ(vn − yn),
zn+1 = zn + εb+ ε(xn − r)zn.
un+1 = un − ε(vn + wn),
vn+1 = vn + ε(un + a2vn) + εµ(yn − vn),
wn+1 = wn + εb+ ε(un − r)wn.

(4)

Here µ is the coupling parameter. Let us examine the structure of the con-
trol parameters plane (a1, a2) for subsystems. Figure 3 shows corresponding
charts of Lyapunov exponents for two coupled systems (4) for different values
of the discretization parameter ε and fixed coupling parameter µ = 0.03. In
the charts we designate new type of dynamical regime:

• 3T means an invariant 2D torus - a three-frequency quasi-periodic
regime (two zero exponents Λ1 = Λ2 = 0, Λ3,4,5,6 < 0). In accordance with
the number of incommensurable frequencies, this mode can also be called a
three-frequency torus.

In Figure 3a the ranges of control parameters a1 and a2 are chosen in such
a way that it corresponds to the transition in an individual oscillator from
a stable fixed point to an invariant curve via Neimark-Sacker bifurcation,
its subsequent doublings and destruction. Note that the resulting chart of
regimes (Fig. 3) is symmetric with respect to the diagonal a1 = a2, since
system (4) is symmetric with respect to the replacement of oscillators.

Let us first consider the case when discretization parameter ε is small
(Fig. 3a). When moving on the parameter plane along the left and bottom
edges of the chart in Fig. 3a one can detect a bifurcation scenario typical
for a single model: birth of inviariant curve from a fixed point via Neimark-
Sacker bifurcation NS with its subsequent doublings and transition to chaos.
In this case, the doubling line of invariant curve is fixed as a thin blue line,
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Figure 3: Lyapunov charts of two coupled discrete Rössler oscillators (4).
Parameter values are r = 8.5, b = 0.1, µ = 0.03; ε = 0.1 (a), ε = 0.16 (b),
ε = 0.2355 (c).

since for this bifurcation two Lyapunov exponents vanish Λ1 = Λ2 = 0. The
doubling line of two-frequency tori is marked with an arrow and denoted
as D2T. Moreover, invariant curves and their doublings are possible in a
neighborhood of the diagonal a1 = a2, on which the interacting subsystems
are identical. In this area for enough big values of parameters we can see
formation of hyperchaos.

As we mentioned above, for two coupled oscillators it is possible to observe
a new type of dynamical regimes - three-frequency quasi-periodic regime
3T, characterized by two zero Lyapunov exponents Λ1,2 = 0, Λ3,4,5,6 < 0
and marked by blue color in Fig. 3a. Such a regime in the phase space is
represented by an attractor in form of a two-dimensional torus. Note that the
realization of 2D-tori requires some non-identity of subsystems with respect
to the control parameters a1 and a2. In this case, doubling of 2D-tori turns
out to be possible, which is illustrated by the phase portraits in the projection
onto the variables of the second oscillator in Figs. 4a and 4b. Phase portraits
do not allow one to clearly visualize the torus doubling bifurcation. For this
purpose, we construct cross-sections of phase portraits. Since model (4) is
discrete, we cannot realize a cross-section, but we can fix a plane and consider
points in some slice near this plane. By analogy with flow dynamical systems,
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it will correspond to a map in the double Poincaré section [22,45]. Figures
4c and 4d show a cross-sections of the phase portraits (demonstrated on
Fig. 4a and 4b respectively) by the plane vn = −3 and a slice near this plane
|vn + 3| < 10−2 with an additional condition un > 0 to take into account the
direction of rotation of the trajectory. In Fig. 4c, we can clearly detect an
invariant curve, which is doubled in Fig. 4d. In both cases, these are smooth
closed invariant curves. The doubling line of two-dimensional tori in Fig. 3a
is a continuation of the D2T line in the 3T region.

Figure 4: Two-dimensional (three-frequency) torus and its doubling in sys-
tem of two coupled discrete Rössler oscillators (4) in phase portraits (top
row) and their sections (bottom row), r = 8.5, b = 0.1, µ = 0.03, ε = 0.1.
Control parameter values: a1 = −0.06, a2 = 0.01 (a,c) and a1 = −0.045,
a2 = 0.05 (b,d).

As the discretization parameter ε increases, it can be seen that the areas
where the trajectories diverge growth. Chaos and multifrequency oscillations
disappear at sufficiently large positive values of the parameters a1 and a2
(Fig. 3b). We see that Neimark-Sacker bifurcation occurs on the border of
a stable fixed point region, and the invariant curve is born. In the region of

8



quasi-periodicity, a fairly wide window of periodic regimes is also observed,
to which an attractor in the form of a 39-cycle corresponds.

With a further increase of discretization parameter in Fig. 3c one can see
that area of divergence continues to expand, and area with attractors became
small (it is necessary to scale the parameter plane again). One can observe
many narrow windows of periodic regimes embedded in both the region of
quasi-periodicity and chaos. The first such window corresponds to a cycle of
period 78. The remaining windows correspond to even longer-period cycles.
We can observe transition to chaos and even formation of hyperchaos.

In the system under consideration, by analogy with the continuous model [41,
42, 44, 46], we can introduce an additional parameter ∆ characterizing the
frequency mismatch of the oscillators:

xn+1 = xn − ε((1−∆)yn + zn),
yn+1 = yn + ε((1−∆)xn + a1yn) + εµ(vn − yn),
zn+1 = zn + εb+ ε(xn − r)zn,
un+1 = un − ε((1 + ∆)vn + wn),
vn+1 = vn + ε((1 + ∆)un + a2vn) + εµ(yn − vn),
wn+1 = wn + εb+ ε(un − r)wn.

(5)

In the center of Fig. 5 we show the Lyapunov exponents chart of such a system
on the plane of control parameters (a1,a2). The values of the frequency
mismatch and the coupling parameter are chosen so that in the system (5)
at typical values a1 = a2 = 0.15 a three-frequency regime is observed. Let’s
compare the chart in Fig. 5 with Fig. 3a. It can be seen that the parameter
plane has become asymmetric, which is associated with the violation of the
symmetry of the system when non-identity is introduced due to the frequency
mismatch. The second nuance is the disappearance of the two-frequency
region in the area near the diagonal a1 = a2 and its replacement by three-
frequency regimes. This is also caused by the fact that the subsystems are
not identical due to the frequency mismatch. The introduction of a frequency
mismatch in its turn leads to a notable system of tongues of resonant invariant
curves immersed in the region of three-frequency regimes. Chaos results from
the overlap of these tongues.

The periphery of Fig. 5 presents the phase portraits in projection onto the
variables of the second oscillator at selected points of the parameter plane.
In Fig. 5c one can see the ”basic” two-dimensional torus (three-frequency
quasi-periodic regime). The rest of the fragments refer to different tongues
of two-frequency quasi-periodicity embedded in the three-frequency region.
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Figure 5: Lyapunov exponents chart of system (5) on the plane of control
parameters (a1, a2); r = 8.5, b = 0.4, µ = 0.23, ε = 0.1, ∆ = 0.193.

Figure 5a shows an invariant curve (two-frequency torus) corresponding to
two loops projected onto the horizontal plane (v,u). Figure 5b displays a
doubling of such a curve. Fig. 5e corresponds to three loops, and Fig. 5d,f -
to their large number.

Accounting for an additional frequency parameter makes it possible to
study the structure of the parameter plane ”the frequency mismatch - cou-
pling parameter (∆, µ)” for the equal values of control parameters a1 = a2 =
0.15 by analogy with the prototype system [44]. Figure 6 shows the corre-
sponding Lyapunov exponents chart (a) and its enlarged fragment (b). It can
be seen that a stable fixed point is observed on a large area of chart. Such
a regime comes to replace the mode of oscillations death in the prototype
continuous system [44]. The mentioned region is surrounded by a domain of
two-frequency quasi-periodicity 2T, for which, in contrast to Ref. [44], res-
onant periodic regimes are not observed. When the coupling decreases, the
two-frequency regimes are transformed into three-frequency regimes 3T. A
totality of resonant tongues of two-frequency quasi-periodicity is built into
3T area. It is well visualized on the enlarged fragment of the chart in Fig. 6b.
As the coupling decreases further, the tongues of the two-frequency quasi-
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periodic regimes begin to overlap, and chaos C appears with development to
hyperchaos H.

Figure 6: Lyapunov exponents chart of system (5) on the plane “frequency
mismatch of oscillators - the coupling parameter” (a) and its enlarged frag-
ment (b); r = 8.5, a1 = a2 = 0.15, b = 0.4, ε = 0.1. Fragment (c): Lyapunov
exponents chart of system (5) for parameters r = 8.5, a1 = a2 = 0.15, b = 0.4,
ε = 0.16.

Let us now increase the discretization parameter ε. The corresponding
chart for ε = 0.16 is shown in Fig. 6c. It can be seen that the regimes of
three-frequency tori disappear, and the region of trajectory divergence begins
to dominate. Along the edges of the two-frequency region, a composition of
small tongues of periodic regimes and chaos is observed.

2.3 Three coupled discrete oscillators (“chain” case)

Consider now the case of three coupled discrete Rössler oscillators. Such a
system is expected to demonstrate nontrivial dynamics, for example, by anal-
ogy with the case of three coupled two-dimensional delayed logistic maps [47,
48].

First, let us choose the coupling that corresponds to the chain, when the
first oscillator is coupled only with the second one, the second - with the first
and third ones, and the third - with the second (scheme of coupling is shown
in Fig. 7a). Let us write down the equations of the system by analogy with
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Figure 7: (a) Scheme of three oscillators coupling as a chain. (b) Lyapunov
exponents chart of the chain of three coupled oscillators (6) on the plane of
the control parameters of the first and second oscillators (a1, a2). The values
of the control parameter of the third oscillator a3 = −0.05, the coupling
parameter µ = 0.02, the remaining parameters r = 8.5, b = 0.1, ε = 0.1,
∆1 = ∆2 = 0. (c) Enlarged fragment of the chart (b)

the prototype continuous system [44]:

xn+1 = xn − ε(yn + zn),
yn+1 = yn + ε(xn + a1yn) + εµ(vn − yn),
zn+1 = zn + εb+ ε(xn − r)zn,
un+1 = un − ε((1−∆1)vn + wn),
vn+1 = vn + ε((1−∆1)un + a2vn) + εµ(yn + qn − 2vn),
wn+1 = wn + εb+ ε(un − r)wn,
pn+1 = pn − ε((1−∆2)qn + sn),
qn+1 = qn + ε((1−∆2)pn + a3qn) + εµ(vn − qn),
sn+1 = sn + εb+ ε(pn − r)sn.

(6)

Here ∆1 and ∆2 are frequency mismatches of the second and third oscillators
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relative to the first. At the beginning by analogy with the case of two oscil-
lators, we present the arrangement of the control parameters plane (a1, a2)
for zero frequency mismatches ∆1 = ∆2 = 0. The corresponding chart is
shown in Figure 7b. The control parameter of the third oscillator is chosen
equal to the magnitude a3 = −0.05, which, for the given values of the other
parameters, corresponds to the quasi-periodic regime in this oscillator in the
autonomous case. For three coupled oscillators we again found new type of
dynamical regime:

• 4T means an invariant 3D torus - a four-frequency quasi-periodic regime
(three zero exponents Λ1 = Λ2 = Λ3 = 0, Λ4,5,6,7,8,9 < 0).

First of all, we note the absence of a periodic synchronization regime for
all oscillators, which is due to the quasi-periodic dynamics of the third oscil-
lator. The picture is asymmetric compared to Fig. 3a, that is also because of
the interaction of the second oscillator with the third one. With an increase
in one of the control parameters with a fixed second, and also with an approx-
imate equality of the parameters a1 and a2, three-frequency quasi-periodicity
3T is born from invariant curve 2T. Now, however, regimes of four-frequency
quasi-periodicity 4T appear between these regions, for which three Lyapunov
exponents are zero Λ1,2,3 = 0, and all the rest are negative. A set of reso-
nant tongues of three-frequency quasi-periodicity is built into the region of
four-frequency quasi-periodicity, which is illustrated by a zoomed fragment of
Lyapunov exponents chart in Fig. 7c. Note that with an increase in the cou-
pling parameter µ, this set of tongues becomes more expressed. We also note
that similarly with Fig. 3a in the region of three-frequency quasi-periodicity,
one can see doubling line D3T.

Let us discuss the mechanism of the emergence of different dimension
tori. To do this, we turn to the graphs of the largest Lyapunov exponents
depending on the parameter a2, plotted along the red line a1 = −0.07 in
Fig. 7b (the thicker section of the red line corresponds to the selected range
for the parameter a2). These graphs are shown in Fig. 8. It can be seen that
for small values of a2, one exponent is zero Λ1 = 0, and the rest are negative,
so that a invariant curve (two-frequency quasi-periodicity) is realized in the
system. At the point QSN1, the exponent Λ2 also turns to zero, which
then remains zero, so that a two-dimensional torus (three-frequency quasi-
periodicity) is born. The nature of the behavior of Lyapunov exponents
allows, according to the method [49], to identify this transition as a saddle-
node bifurcation of invariant curves when a stable invariant curve collides
with a saddle invariant curve, as a result of which a two-dimensional torus
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is emerged. With the growth of the control parameter a2, other exponents
show similar behavior. Before the point QSN2, two exponents Λ1,2 = 0 are
equal to zero, and Λ3,4 < 0. At the point QSN2, the exponent Λ3 vanishes
and then remains zero, so that Λ1,2,3 = 0. By the method of [49], we identify
this bifurcation as a saddle-node bifurcation of two-dimensional tori.

Figure 8: Graphs of the largest Lyapunov exponents depending on the param-
eter a2, other parameters r = 8.5, b = 0.1, ε = 0.1, µ = 0.02, ∆1 = ∆2 = 0,
a1 = −0.07, a3 = −0.05. QSN are points of saddle-node bifurcations of tori,
D4T is a point of a four-frequency torus doubling.

The behavior of Lyapunov exponents in Fig. 8 makes it possible to reveal
one more tori bifurcation. At point D4T, not only the exponents Λ1,2,3 are
equal to zero, but the fourth exponent Λ4 also vanishes. At the same time,
in the vicinity of this point, it remains negative. According to [49], this
corresponds to the doubling bifurcation of a three-dimensional torus which
corresponds to four-frequency quasi-periodicity. On the chart in Fig. 7b, the
line of three-dimensional tori doubling is a continuation of two-dimensional
tori doubling line D3T.

Figure 9 shows the Fourier spectra for two-, three- and four-frequency
quasiperiodicity as an illustration of the different regimes. One can see
the structure of the spectra, which is characteristic of quasi-periodic oscilla-
tions, and their successive complication with an increase in the number of
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incommensurable frequencies. For the simplest two-frequency quasi-periodic
regime (an invariant curve in the phase space of map (6)) Fourier spec-
trum is discrete, it has a main peak and satellite peaks, which corresponds
to combinations of two frequency components (Fig. 9a). The transition to
three-frequency quasi-periodicity lead to the birth of satellite peaks near each
frequency peak of two-frequency quasi-periodicity. In Fig. 9b, we see such a
transition, Fourier spectrum has become more complex, near each satellite
peak of two-frequency quasi-periodicity the set of new peaks is observed, but
it is clear that the spectrum is discrete. Figure 9c shows Fourier spectrum
of the four-frequency quasi-periodicity. It can be seen that spectrum has be-
come more complicated (additional satellite peaks were born) and it is close
to continuous, but discrete components are preserved.

Figure 9: Fourier spectra of chain consisted of three coupled discrete os-
cillators (6) at a1 = −0.07 for a two-frequency torus a2 = −0.05 (a), a
three-frequency torus a2 = −0.02 (b), a four-frequency torus a2 = 0.05 (c).
Other parameters are a3 = −0.05, r = 8.5, b = 0.1, µ = 0.02, ε = 0.1,
∆1 = ∆2 = 0.

Let us now discuss the case of nonzero frequency mismatches of oscillators.
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It is convenient to construct the parameter plane of frequency mismatches
(∆1, ∆2) (by analogy with the case of a chain of coupled van der Pol oscilla-
tors [50] and a flow system of three Rössler oscillators [44]). Figure 10 shows
the corresponding Lyapunov exponents chart for a1 = a2 = a3 = 0.1 and
ε = 0.02, µ = 0.06. It can be seen that two-frequency regimes are observed
mainly in a small range of parameters in the vicinity of zero frequency mis-
match, when the characteristic frequencies of all oscillators coincide (area in
Fig. 10 near point ∆1 = ∆2 = 0).

Figure 10: Lyapunov exponents chart of the three coupled in a chain oscilla-
tors (6) for the values of the parameters r = 8.5, b = 0.1, a1 = a2 = a3 = 0.1,
µ = 0.06, ε = 0.02.

On Fig. 11a we present graphs of Lyapunov exponents depending on
the frequency mismatch of the central oscillator ∆1 and characteristic phase
portraits along the red horizontal dotted line ∆2 = −0.05 in the Fig. 10. As
∆1 increases, four-frequency tori, three-frequency tori, two-frequency tori,
and then again three- and four-frequency tori are sequentially observed. The
phase portraits evolve accordingly.

Let us now discuss bifurcations of invariant tori. As can be seen from the
graphs in Fig. 11a to the left of the QH point, two exponents Λ1,2 = 0 are
zero, and the rest are negative. However, up to the point QH, two of them
are equal to each other, i.e. Λ3 = Λ4. When passing through this point from

16



Figure 11: (a): Graphs of Lyapunov exponents and characteristic phase
portraits for parameter values corresponding to Fig. 10 and ∆2 = −0.05.
QH is the point of quasi–periodic bifurcation of three-frequency tori. (b):
Zoomed fragment of graphs of Lyapunov exponents in Fig. 11a.

left to right, the third exponent becomes zero Λ3 = 0, and the fourth again
tend to the negative region Λ4 < 0. In accordance with [49], a bifurcation of
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tori appears different from the one we mentioned above, namely the quasi-
periodic Hopf bifurcation QH, when a four-frequency torus is born from a
three-frequency one in a soft way. Note that several windows of resonant
three-frequency tori are visible to the right of the QH point in the 4T region.

The details of the transition between tori of different dimensions are illus-
trated in Fig. 11b, which shows an enlarged fragment of Lyapunov exponent
graphs from Fig. 11a. This fragment occupies the area of two-frequency
tori 2T and bordering areas. At large ∆1 in this Figure, a three-torus 3T
with Λ1,2 = 0 is observed. When the parameter ∆1 decreases, the torus col-
lapses and a narrow window of chaos C appears. Next, two-torus 2T arises,
for which Λ1 = 0. Inside this region, the point of the two-frequency torus
doubling D2T is clearly visible; exactly in this point the second exponent
vanishes Λ2 = 0. Then there is a certain transition region Q, inside which
the second exponent oscillates near zero: here the windows of two-frequency
and three-frequency tori alternate. At small ∆1, a saddle-node bifurcation
of a three-frequency torus occurs at the point QSN, as a result of which a
four-torus 4T is born (type of bifurcation is determined by the corresponding
behavior of the exponents Λ3 and Λ4). Note that the doubling bifurcation
point of the three-frequency torus D3T is also well visualized.

2.4 Three coupled discrete oscillators (”network” case)

For three oscillators, another type of coupling is also possible, when each
oscillator is coupled to each (case of ”ring” or ”network”, schematic repre-
sentation is shown in Fig. 12a). In this case, the equations of the system
have the next form:

xn+1 = xn − ε(yn + zn),
yn+1 = yn + ε(xn + a1yn) + εµ(vn + qn − 2yn),
zn+1 = zn + εb+ ε(xn − r)zn,
un+1 = un − ε((1−∆1)vn + wn),
vn+1 = vn + ε((1−∆1)un + a2vn) + εµ(yn + qn − 2vn),
wn+1 = wn + εb+ ε(un − r)wn,
pn+1 = pn − ε((1−∆2)qn + sn),
qn+1 = qn + ε((1−∆2)pn + a3qn) + εµ(vn + yn − 2qn),
sn+1 = sn + εb+ ε(pn − r)sn.

(7)

Figure 12b shows the Lyapunov exponents chart of this system on the
plane of the control parameters of the first and second oscillators (a1, a2) in
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the absence of frequency mismatches ∆1 = ∆2 = 0. It should be compared
with the case of the chain in Figure 7b. It can be seen that the picture for
the network and the chain is qualitatively similar. However, for the network,
the plane of control parameters becomes symmetric. This is not surprising:
for a system in the form of a network, all oscillators are equivalent in the
absence of frequency mismatches. That is not so in the case of a chain.

Figure 12: Coupling scheme of three oscillators as a ring, or network (a).
Lyapunov exponents charts of a network of three oscillators: (b) on the
plane of control parameters for ∆1 = ∆2 = 0, a3 = −0.05, ε = 0.1, (c) on the
plane of frequency mismatches for a1 = a2 = a3 = 0.1, µ = 0.06, ε = 0.02.
The remaining parameters are r = 8.5, b = 0.1.

This case can also be compared with Fig. 3a, when two identical oscil-
lators interacted. The structure of the chart is very similar, but the basic
self-oscillating mode is not a fixed point, but an invariant curve. As the
parameters a1, a2 increase, the birth of a two-frequency torus, its doubling
bifurcation and also two symmetrical regions in the form of tongues of a
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three-frequency torus are observed. Thus, the picture is completely similar
to Fig. 3a, but with an additional frequency component.

Figure 12c presents a chart in the presence of frequency mismatches on
the plane (∆1,∆2), which should be compared with Figure 10 for the case
of a chain. We can also see the availability of symmetry, but in this case
three-frequency tori 3T dominate.

3 Discrete hyperchaotic Rössler oscillator (Four-

dimensional)

The four-dimensional Rössler system with hyperchaos [30,51] has the form

ẋ = −y − z,
ẏ = x+ ay + w,
ż = b+ xz,
ẇ = −cz + dw.

(8)

Here a, b, c, d are parameters. And accordingly, the discrete system has the
next form

xn+1 = xn − ε(yn + zn),
yn+1 = yn + ε(xn + ayn + wn),
zn+1 = zn + ε(b+ xnzn),
wn+1 = wn − ε(czn − dwn).

(9)

Figure 13 shows the Lyapunov exponents charts of system (9) for various
values of the discretization parameter ε. For small values of the parameter
ε, the structure of the chart is very close to that for the flow system (8) [51],
but with the replacement of periodic regimes in the prototype system by
two-frequency ones, and two-frequency regimes by three-frequency ones.

The simplest attractor implemented in the map (9) is the invariant curve,
which is observed for sufficiently large values of the parameter b. As the
parameter b decreases, the invariant curve loses stability as a result of the
quasi-periodic Hopf bifurcation and a two-dimensional torus is born. (We
will explain the type of bifurcation below.) With a further decrease in the
parameter b, the two-dimensional torus is destroyed, and chaos or hyperchaos
is observed in the map. The chart also shows that within tongues with an
invariant curve, a quasi-periodic Hopf bifurcations can occur with formation
of two-dimensional torus on the base of different invariant curves.
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Figure 13: Lyapunov exponents charts of the discrete hyperchaotic Rössler
oscillator (9), a = 0.25, d = 0.05, (a) ε = 0.001; (b) ε = 0.01; (c) ε = 0.02.

As the discretization parameter ε increases, the dynamical regimes disap-
pear at small values of the parameter c. This feature is due to the fact that
as c decreases, the attractor grows in size and a small increase in the param-
eter ε leads to escape of the trajectories to infinity. In this case, the types of
dynamical regimes do not change with an increase in the discretization step.

Consider the features of the phase portraits of map (9) for a mild value of
the discretization parameter, ε = 0.01. Figure 14 show a graphs of Lyapunov
exponents depending on the parameter b at c = 0.4, as well as characteristic
two-dimensional projections of phase portraits. The graphs of Lyapunov
exponents demonstrate the bifurcation of a three-frequency torus birth (QH)
and the evolution of chaos. In Fig. 14b, a smooth closed curve is visible, which
then undergoes a quasi-periodic Hopf bifurcation (QH) and a stable two-
dimensional torus is born (Fig. 14c). The type of bifurcation in accordance
with [49] is determined by the character of the behavior of the exponents:
up to the bifurcation threshold Λ2 = Λ3.

It is very difficult to trace the destruction of a two-dimensional torus
using phase portraits (Fig. 14d). However, as we can see, the behavior of
the map (9) is very close to the behavior of the flow system; accordingly,
we can assume an embeddability of the map into the flow. This fact is
also confirmed by the presence of a zero Lyapunov exponent for a chaotic
attractor; this feature is mandatory for flow systems, while being a special
case [13,35] for maps. Then it is possible to analyze the behavior of the system
in the Poincaré section. As we noted, it is impossible to strictly implement
this procedure for map, since the system is discrete, but we can select a
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Figure 14: Graphs of Lyapunov exponents at c = 0.4 (a); two-dimensional
projections of phase portraits (b, c, d) and their sections (e, f ) for the discrete
hyperchaotic Rössler oscillator, a = 0.25, c = 0.4, d = 0.05, ε = 0.01. (b):
b = 100; (c), (e): b = 65; (d), (f ): b = 33.

certain layer in the phase space so that the points of the map falling into
this layer will correspond to the section. As the section plane we chose y = 0
and layer 2 · 10−2. On the graphs we designate the points that fall into the
mentioned plane using the superscript ”S”: xS

n, y
S
n , z

S
n , w

S
n . Figures 14e and

14f demonstrate such sections of the phase portraits. It is clearly seen that the
section of a two-dimensional torus corresponds to a smooth closed invariant
curve (Fig. 14e). The section of the chaotic attractor (Fig. 14f) reveals the
complex structure of the attractor, while the basic invariant curve is clearly
visible, the destruction of which has occurred. Moreover, this attractor is
characterized by one positive Lyapunov exponent.

22



Similar bifurcations can also occur on the basis of other invariant curves,
and hyperchaos can also develop. Figure 15 shows similar illustrations for a
two-loop invariant curve at c = 0.47. On the graph of Lyapunov exponents
(Fig. 15a), intervals are clearly visible where one and two largest Lyapunov
exponents are equal to zero, which corresponds to attractors in the form of an
invariant curve and a two-dimensional torus, respectively. On Fig. 15b and
15c the projections of the attractors are shown, where the two-loop invariant
curve and the torus born on its base are clearly visible. On Fig. 15d we
present projections of a hyperchaotic attractor.

To analyze the structure of attractors, we also examined their sections
presented in Figs.15e-15i. Figures 15e-15f clearly show two smooth invari-
ant curves corresponding to a two-dimensional torus in the full phase space
and their destruction. For this case an important feature of the collapse
of invariant curves is that the chaotic attractor absorbs an unstable invari-
ant curve corresponding to the base one, thus forming a discrete chaotic
Shilnikov attractor [39], which has two-dimensional unstable manifold. On
Fig. 15g we demonstrate an example of a two-component Shilnikov discrete
attractor that is hyperchaotic. A further decrease in the parameter b leads
to the merging of the attractor components and the development of a more
complex hyperchaotic attractor (Fig. 15h,i).

As noted earlier, for these examples, there is a very exact correspondence
between the attractors of the flow and discretized models. The chaotic be-
havior of a discrete Rössler oscillator is very close to a flow system, since
the maximum number of Lyapunov exponents is two, while for map the dy-
namics could be more complex, there could be three exponents. This feature
is due to the fact that the attractor of the system is born on the basis of
saddle cycles, has a small basin of attraction and is sensitive to changes in
parameters and initial conditions. Increasing the discretization parameter
and the number of instabilities in the system leads to the destruction of the
attractor and the escape of trajectories to infinity.

4 Conclusion

Replacing time derivatives with finite differences in the Rössler systems al-
lows us to build an original three- and four-dimensional maps. It is possible
to introduce into consideration both an individual such system and two or
three coupled maps. The individual map demonstrates the possibility of
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Figure 15: Graphs of Lyapunov exponents at c = 0.47 (a), two-dimensional
projections of phase portraits (b, c, d) and their sections (e-i) of the discrete
hyperchaotic Rössler oscillator, a = 0.25, c = 0.4, d = 0.05, ε = 0.01. (b):
b = 16.1; (c), (e): b = 13.5; (d): b = 5.25; (f ): b = 13; (g): b = 11.5; (h):
b = 11.0; (i): b = 8.25
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two-frequency tori (invariant curves) and their doubling. For two and three
coupled oscillators, the method of Lyapunov exponents charts is effective,
which reveals invariant tori of different dimensions. Two coupled maps ex-
hibit doubling not only of invariant curve, but also of two-dimensional tori.
The possibility of frequency mismatch of oscillators is taken into account,
which leads to an asymmetry of the picture on the plane of the control
parameters. A strongly marked structure of the tongues of resonant in-
variant curves immersed in the region of three-frequency quasi-periodicity is
observed. For the case of three coupled maps, the regions of existence of
two-, three- and four-dimensional tori are identified. Analysis of Lyapunov
exponents graphs reveals the possibility of quasi-periodic saddle-node bifur-
cation of two-dimensional invariant tori and quasi-periodic Hopf bifurcation
of such tori. Analogies and differences in the structure of Lyapunov expo-
nents charts for the topology of coupling in the form of a chain and a network
are discussed.

A discrete version of the Rössler hyperchaotic oscillator is also examined.
It is shown that picture of dynamical regimes for a discrete system is close
to the original flow system, but with the replacement of periodic regimes
by two-frequency, and two-frequency by three-frequency. With an increase
in the discretization parameter attractors do not become more complicated,
they collapse and the trajectories go to infinity. But for small values of
discretization parameter it is possible to obtain discrete chaotic Shilnikov
attractors, which corresponds to hyperchaotic dynamical regime.
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“Three-dimensional Hénon-like maps and wild Lorenz-like attractors,”
International Journal of Bifurcation and Chaos 15, pp. 3493-3508.

[36] Gonchenko, A. S., Gonchenko, S. V. & Shilnikov, L. P., [2012] “To-
wards scenarios of chaos appearance in three-dimensional maps,” Rus-
sian Journal of Nonlinear Dynamics 8, pp. 3-28 (in Russian).

[37] Gonchenko, S., Gonchenko, A., Kazakov, A., & Samylina, E. [2021] “On
discrete Lorenz-like attractors,” Chaos: An Interdisciplinary Journal of
Nonlinear Science 31, 023117.

[38] Richter, H. [2008] “On a family of maps with multiple chaotic attrac-
tors,” Chaos, Solitons & Fractals 36, pp. 559-571.

[39] Bakhanova, Y.V., Gonchenko, S.V., Gonchenko, A.S., Kazakov, A.O.
& Samylina, E.A. [2022] “On Shilnikov attractors of three-dimensional
flows and maps,” Journal of Difference Equations and Applications.
DOI:10.1080/10236198.2022.2063051

[40] Hampton, A. E. & Meiss, J.D. [2022] “The three-dimensional generalized
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[49] Broer, H., Simó, C. & Vitolo, R. [2011] “Quasi-periodic bifurcations
of invariant circles in low-dimensional dissipative dynamical systems,”
Regular and Chaotic Dynamics 16, pp. 154-184.

[50] Emelianova, Y.P., Kuznetsov, A.P., Turukina, L.V., Sataev, I.R. &
Chernyshov, N.Y. [2014] “A structure of the oscillation frequencies
parameter space for the system of dissipatively coupled oscillators,”
Communications in Nonlinear Science and Numerical Simulation 19,
pp. 1203-1212.

[51] Stankevich, N., Kazakov, A. & Gonchenko, S. [2020] “Scenarios of hy-
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