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a b s t r a c t

We demonstrate that strongly asymmetric limit cycles can be observed in the system of three identical
ring oscillators (3-gene networks known as Repressilators) globally coupled by signal molecule
diffusion added to the model in a way like the known bacterial ‘‘quorum-sensing’’ mechanism. These
cycles are stable over a wide interval of the coupling strengths where they expel the dominant
hyperchaotic regime existing in three Repressilators in very large areas of parameters. The bifurcations
of the inhomogeneous limit cycle, with a high-amplitude orbit for one oscillator and two low-
amplitude identical orbits for the other two, are traced. Bifurcation analysis reveals an unusual cascade
of bifurcations ended in the appearance of a new limit cycle with splitted (slightly nonidentical) low-
amplitude orbits. Both cycles lose stability giving birth inhomogeneous chaos in the small parameter
interval. Hyperchaos dominates in the parameter plane around the ‘‘island’’ with inhomogeneous
limit cycles, and this accounts for very long hyper chaotic transients when the system is returning
to stable asymmetric cycles after their perturbations. In turn, it is the cycles that contribute the
asymmetric and often rather long pieces in hyperchaotic trajectories. The presented cycles differ from
the known asymmetric attractors: inhomogeneous limit cycles born from ‘‘oscillation death’’ and the
cycles observing in ‘‘smallest chimeras’’.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Models of coupled oscillators have been studied for many
ears in order to better understand complex phenomena in very
ifferent natural and artificial systems [1–4]. To determine their
asic dynamic properties, the single oscillators exhibiting a limit-
ycle attractor are usually considered. As generally accepted, the
et of collective regimes is controlled by both the properties of
ingle oscillators and of the design of their interactions. Hyper-
haos is an interesting regime emerging, for example, in two
haotic Rössler oscillators coupled by linear diffusion of one vari-
ble [5–7] and in two identical Chua circuits with bi-directional
on-linear coupling [8] (as a few to mention among others). There
re publications in which hyperchaos arises in coupled regular
scillators stimulated by external periodic oscillations that results
n their chaotization [9–11].
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Recently [12], we detected chaos-hyperchaos transition in the
simplified model comprising three identical synthetic genetic ring
oscillators. This oscillator, named Repressilator, became popular
after its implementation in bacteria [13]. Stability of its dynamics
was seriously improved after the revision made in [14,15]. As a
result Repressilator found interesting application [16].

The three genes in the ring produce mRNAs which are trans-
lated to proteins-repressors and they impose Hill function in-
hibition on each next gene in the ring (each ring member is
inhibited by the preceding one and, in its turn, inhibits the next
one). The simple ring structure of the Repressilator allows for
the stability of 3-dimensional limit cycle and the absence of
its period-doubling bifurcations over very large areas of control
parameters.

Similar to other synthetic genetic networks, Repressilators
implemented in different bacteria (or other appropriate contain-
ers impermeable to repressors), have to be specially connected
via the external medium in order to form desired collective
regimes. The mechanism of bacterial quorum sensing (QS) is
a natural candidate for such a function, since it contains the
necessary elements for the production of small specific molecules

(autoinducers) that rapidly diffuse in the environment and can
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nfluence gene expression. It has been explored in the model
ith frequency-detuned Repressilators [17] to demonstrate their
omplete in-phase synchronization as well as in the constructing
n-phase regime [18] and chaos [19] in quorum sensing coupled
ynthetic relaxation genetic oscillators.
It is very important to underline the flexibility of the QS-

oupling designs. Modern genetic engineering permits equipping
given gene with different promoters and different genes with

he same promoter. For example, it is possible to put two genes
nder control of the identical promoter: the one gene codes au-
oinducer production and the second gene codes selected repres-
or. The next essential possibility of modifying the QS-depending
ommunications is more or less free choice of the gene in the
ing to be targeted by the autoinducer. It is possible to add one
ore Repressilator’s gene and control its expression by the pro-
oter capable to accept the regulatory action of autoinducer. This

lexibility of the coupling scheme opens new possibilities both
or the generation of coherent behavior in heterogeneous pop-
lations [17,18] and for the remarkable variability of collective
egimes in homogeneous ones. One version has been developed
n [20] and was intensively used to study very rich dynamics
f two coupled identical 6-dimensional Repressilators [21,22].
s shown recently, in two QS-coupled 3-dimensional Repressi-
ators there are wide regions of control parameters where stable
trongly inhomogeneous limit cycle arises as a result of the un-
sual sequence of pitchfork and Neimark–Sacker bifurcations of
he unstable in-phase limit cycle [23].

The above mentioned results stimulate the investigation of
ollective regimes generated in three globally QS-coupled iden-
ical Repressilators. In general, three coupled identical oscillatory
ystems are the simplest ones capable of exhibiting frustration.
rustration plays an important role in the dynamics of three
oupled oscillators because it may cause symmetry breaking
hat drives certain asymmetric synchronized modes. A group-
heoretical model-independent analysis [24] has presented sev-
ral modes of oscillating patterns for three symmetrically coupled
dentical oscillators: (i) in-phase solution (InP); (ii) rotating wave
RW) [25] (phase differences between the orbits are 2π/3):
iii) two in-phase orbits are in anti-phase with third one (‘‘partial
n-phase’’) and (iv) two orbits are in anti-phase providing for
oubled frequency oscillation and small amplitude for the third
scillator (1anti1:1half-period).
Several experimental reports demonstrate the entire or partial

ets of these regimes. Yoshimoto et al [26] observed InP, RW limit
ycles in three tanks with the Belousov–Zhabotinsky reaction
oupled by mass exchange and Vanag et al. [27] found the same
egimes in a model of three identical Oregonators with global
egative coupling. Limit cycles InP, RW and partial in-phase were
bserved as isolated or coexisting regimes in three electronic re-
axation oscillators inhibitory coupled to a ring by ohmic resistors
ver a wide area of control parameters [28]. Synchronization of
hree identical plastic bottle oscillators in a water bath coupled
ia two sets of different configurations of thin tubes also shows
p as the emergence of the above mentioned regimes [29].
Similar experiments with natural objects are not so easily

ontrolled compared with the hand-made systems. However, dif-
erent combinations of the discussed regimes are robustly ob-
erved. For example, three Plasmodium oscillators connected by
rotoplasmic streaming [30] showed RW, partial in-phase, and
anti1half-period modes. When set along a straight line, three
inging male Japanese tree frogs (which call females nearly peri-
dically being isolated) demonstrate RW and 2in/1anti synchro-
ization if they hear sounds including calls of other males [31].
he collective behavior of three-coupled candle flame oscillators
n a triangular arrangement showed three distinct types of syn-

hronized modes [32] i.e. the in-phase mode, the partial in-phase

2

mode, and the RW mode. In some experiments not all principally
expected periodic regimes were observed. It is probably a result
of the limited intervals of parameters scanning and/or of the
deviations from symmetry in investigated systems.

In most model networks cited above, interactions between
the identical oscillators are realized using the same component
taken from any oscillator and applied to other oscillators in the
network with various weights which depend on the oscillator
pairs that are coupled. As a rule, in the corresponding systems
of ODEs such interactions are formalized as a classical diffusion
term D∗(X(i+1)+X(i−1)−2X(i)) in the equation for the chosen
ariable of the oscillator. Our version of QS-coupling is based on
he diffusion of autoinducer which is not the principle compo-
ent of the Repressilator limit cycle. Autoinducer production and
arget gene expression are associated with different Repressilator
omponents ordered in time due to the ring structure. In addition,
n our approach, coupling strength is controlled by dilution of
ignal molecules in the environment rather than by changing
heir diffusion coefficient. Therefore, we expect that the new
ttractors and unusual multistability might arise.
As demonstrated in our previous publication [12], three QS-

oupled Repressilators form a stable RW at very small coupling
trengths. With an increase in the coupling strength, the RW cycle
oses stability via Neimark–Sacker bifurcation, then torus destruc-
ion produces chaos which, in turn converts to hyperchaos after
erging with the saddle RW cycle. Here, we aim to investigate

he dynamics of three QS-coupled Repressilators over extended
arameter intervals where hyperchaos has already formed. Trac-
ng the evolution of hyperchaos we observe its replacement in a
ignificant window of parameters by a strongly inhomogeneous
imit cycle with winding numbers of 1:2:2 where one oscillator is
unning along a large-amplitude orbit out-of-phase with the two
thers, which move in-phase with small amplitudes (LC_1L2in2s).
etailed bifurcation analysis reveals an unusual set of inhomoge-
eous regimes inside the area of coupling strengths bounded by
addle–node bifurcations while the parameter intervals of their
tability are controlled by the pitchfork, Neimark–Sacker, and
eriod doubling bifurcations. Moreover, in the parameter areas
here the discovered inhomogeneous limit cycles are unstable
hey manifest themselves as important elements of hyperchaotic
keleton.
The work is structured as follows. In Section 2, we describe

he model, the model parameters, the main steps to hyperchaos,
lassification of regimes according to the spectrum of Lyapunov
xponents and the coarse graining map of regimes. In Section 3,
detailed study of the system dynamics is given, with the focus
n the evolution of the inhomogeneous limit cycles. In Section 4
he conclusions and the comparison of the revealed cycles with
he other types of inhomogeneous cycles are presented.

. Object and model

We investigate the dynamics of three Repressilators interact-
ng via a bacterial quorum sensing (QS) mechanism used pre-
iously (see [12] for details). Fig. 1a shows three Repressilators
ocated in different cells and coupled via diffusion of special signal
olecules (autoinducer, AI) in the external medium.
The QS feedback is maintained by the AI produced (rate kS1)

roportionally to the protein B concentration, while the autoin-
ucer molecules diffuse quickly in the environment and activate
rate κ in combination with Michaelis function) the production of
RNA for protein C , which, in turn, reduces the concentration of
rotein A, which results in the activation of protein B production.
n this way, protein B plays a dual role of direct inhibition of
rotein C synthesis and AI-dependent activation of protein C
ynthesis, resulting in complex dynamics of the repressilator,
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Fig. 1. a. Scheme of three Repressilators globally coupled using quasi-steady state version of quorum-sensing mechanism; b.-d. Time series demonstrating main
dynamical regimes: b. Q = 0.03 — periodic regime (rotating wave); c. Q = 0.12 — chaotic regime (Λ1 = 0.0011, Λ2 = 0.0, Λ3 = −0.0022, Λ4 = −0.024); d.
Q = 0.3 — hyperchaotic regime (Λ1 = 0.0077, Λ2 = 0.004, Λ3 = 0.0, Λ4 = −0.0259). Other parameters as in (3) and α = 4000.
ven for a single repressilator. We reduce the model for the case
f fast mRNA kinetics ((a, b, c) are assumed in a steady state with
heir respective inhibitors (C , A, B), so that da/dt = db/dt =

c/dt = 0). The resulting equations for dimensionless repressors
A, B, C) and autoinducer (S) concentrations are

Ȧi = β1(−Ai +
α

1+Cn
i
),

Ḃi = β2(−Bi +
α

1+Ani
),

Ċi = β3(−Ci +
α

1+Bni
+

κSi
1+Si

),

Ṡi = −kS0Si + kS1Bi − η(Si − Sext ),

(1)

where i = 1, 2, 3 are subscripts for the three repressilators, βj
(j = 1, 2, 3) are the ratios of the protein decay rate to the mRNA
decay rate, α stands for the maximum transcription rate in the
absence of the inhibitor, and n is the Hill cooperativity coefficient
for inhibition. For the quorum-sensing pathway, kS0 is the ratio
of the S decay rate to the mRNA decay rate, and as previously
mentioned, kS1 is the rate of production of S: κ gives the strength
of S-dependent activation of protein C production. The diffusion
coefficient η depends on the membrane permeability to the S
molecule. The concentration of S in the external medium Sext
is determined (in a quasi-steady state approximation) by S pro-
duced by all the repressilators (S1, S2, S3) and a dilution factor Q ,

Sext = Q
S1 + S2 + S3

3
. (2)

The model parameters are fixed identical for each repressilator
and coincide with those proposed in [12]:

β1 = 0.5, β2,3 = 0.1, n = 3, kS0 = 1, kS1 = 0.01,
η = 2, κ = 15. (3)

Here, we use the coupling strength Q and the maximum tran-
scription rate in the absence of inhibitor α as the control param-
ters. To recall the main steps leading to hyperchaos (for more de-
ails, see [12]), Figs. 1b, 1c, 1d show time series for RW [25], chaos
nd hyperchaos that occur as the coupling force increases, in
aption one can find Lyapunov exponents for chaotic time series.
Here we present a more in-depth study of collective regimes

n the parameter areas where hyperchaos dominates. As a first
tep we calculate the spectrum of Lyapunov exponents over the
oarse graining of the (Q - α) parameter plane. Model (1) has
12-dimensional phase space and is characterized by 12 Lyapunov
exponents, but only the largest fourth exponents are important
and used for regime classification presented in Table 1.
3

Fig. 2. The map of regimes classified according definitions described in Table 1.
Olive color points presented on the chart mean that for these parameters the
spectrum of Lyapunov exponents does not coincide with classification presented
in Table 1. The reasons of these specific points will be discussed below.

Table 1
Dynamic mode descriptors used in the chart of Lyapunov exponents.
Dynamic regime Label Color Spectrum of LEs

Periodic oscillations P Red Λ1 = 0,
0 > Λ2 > Λ3 > Λ4

Two-frequency T2 Yellow Λ1,2 = 0,
quasiperiodic oscillations 0 > Λ3 > Λ4

Three-frequency T3 Blue Λ1,2,3 = 0
quasiperiodic oscillations 0 > Λ4

Chaotic oscillations C Gray Λ1 > 0, Λ2 = 0,
0 > Λ3 > Λ4

Hyperchaotic oscillations HC White Λ1 > Λ2 > 0,
Λ3 = 0, 0 > Λ4

The chart shown in Fig. 2 was constructed by scanning the
parameter plane using adiabatic initial conditions and increasing
parameter α in a stepwise manner: we take fixed random initial
conditions for each new step of Q value at α = 0, and then
for each new value of α, we take initial conditions from the last
step of the previous α. Such calculations do not give a complete
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Fig. 3. Three Repressilators demonstrate the transition hyperchaos to inhomogeneous limit cycle (LC1L2in2s) vs the coupling strength Q for α = 2777: a. bifurcation
ree obtained by direct integration with Poincaré section C1 = 7.0; b. The six largest Lyapunov exponents; c. long time series, including the moment of transition
nd short inset with orbit for Q = 0.686.
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nalysis of the dynamics but show the general layout of the mode
ap for a further detailed study. The sequence of the stable
ttractors as a function of Q for small α < 500 is the same as was
bserved in our previous paper [12]: RW, quasiperiodic oscillation
fter Neimark–Sacker bifurcation of RW accompanied by reso-
ant cycles formation, chaotic dynamics followed by hyperchaos
ormation.

After expanding the parameter plane, our parameter scanning
howed that there are significant intervals of α and Q values
hat form an ‘‘island’’ with limit cycles and collective modes
rising after their bifurcations. This wide range of parameter α

alues is quite realistic for modern engineering of gene promoters
eing used in synthetic genetic networks. Their detailed study
nd evolution over the entire plane of (α - Q ) parameters is
he main goal of the current work. The numerical results of the
onsidered system are obtained through the Runge–Kutta fourth-
rder scheme, and the bifurcation analysis is carried out using the
PPAUT software [33].

. Results

We choose α = 2777 for detailed analysis of hyperchaos
volution. In Fig. 3 bifurcation trees (3a, projections into differ-
nt dynamical variables), plots of Lyapunov exponents (3b) as a
unction of coupling strength Q are presented. The bifurcation
ree was constructed using the points (marked by AS

1, AS
2, AS

3)
n the cross-section of phase space by hypersurface C1 = 7.0.
At the start, the initial conditions were fixed as (A0

1 = 34.62,
B0
1 = 6.6, C0

1 = 5.0, S01 = 0.12, A0
2 = 4.7, B0

2 = 25.3, C0
2 = 7.6,

S02 = 0.18, A0
3 = 34.2, B0

3 = 9.7, C0
3 = 4.2, S03 = 0.13), and

hen we use stepwise continuation of parameter Q changing the
initial conditions after each step: the values of last phase variables

from the previous step are used as initial conditions for the next

4

step. The bifurcation tree and plots of Lyapunov exponents were
calculated with different direction of scanning the Q -intervals:
[0.5–0.75] and Q [1.0–0.75]. Fig. 3c shows the time series with
ransition to limit cycle and transient process.

The bifurcation trees, Lyapunov exponents and the times se-
ies show the transition hyperchaos into inhomogeneous limit
ycle marked as LC1L2in2s because two oscillators with small
mplitudes (labeled as s) are running in-phase being out of phase
ith the large-amplitude (labeled as L) third oscillator as seen in
he zoomed part of the time series (Fig. 3 inset). Such a complex
escriptor for the observed basic dynamic state will be useful
ater in describing and analyzing its bifurcation.

The detected cycle is stable with respect to external per-
urbations that destroy the in-phase regime of two elements.
ifurcation analysis by XPPAUT package [33] showed its nontriv-
al dynamics in a broad interval of the coupling strengths, see
ig. 4.
Two saddle–node bifurcations LP1_1 and LP1_2 are the exter-

al boundaries of the interval within which the LC1L2in2s exists.
ut this interval does not coincide with interval where we can see
anifestations of the limit cycle with direct integration (Fig. 3a,
b), because it is not always stable between LP_1 and LP_2. This
nterval includes regions where other limit cycles are also stable
nd can be analyzed by direct integration. The internal boundaries
f the parameter intervals where LC1L2in2s is stable are revealed
y XPPAUT bifurcation continuation as a consequence of pitchfork
BP, Q = 0.686), period doubling and Neimark–Sacker (TR1,
Q = 0.9542) bifurcations as presented in Fig. 4. The switching
of the stable LC1L2in2s continuation in the BP-point results in
the appearance of new unstable inhomogeneous limit cycle. The
line of its bifurcation continuation is mainly overlapped with that
for stable LC1L2in2s and therefore not shown in Fig. 4. Stable

LC1L2in2s is already strongly asymmetric (see Fig. 3c inset) and
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Fig. 4. a. AUTO continuation of LC1L2in2s: stable (unstable) part is green (blue)
s Q . Bifurcations: Q = 0.55 — saddle–node (LP1_1); Q = 0.68597 — pitchfork
BP), Q = 0.75 — period doubling (PD1_1); Q = 0.789 — PD2_1; Q = 0.823 —
D2_2; Q = 0.8526 — PD1_2; Q = 0.9542 — Neimark–Sacker (TR1); Q = 0.9876

— LP1_2. The regimes after the period doubling bifurcation PD2_1, PD2_2 will
be considered below. b. Time series of the unstable LC1L2out2s just after the
switching of LC1L2in2s continuation in the point of the pitchfork bifurcation at
Q = 0.68597.

its pitchfork bifurcation is manifested as the delicate splitting
of two identical small-amplitude orbits observed in the zoomed
time series (Fig. 4b inset) extracted by XPPAUT option which
permits such visualization.

Although the both branches of LC1L2in2s are unstable be-
tween bifurcations LP1_1 and BP, their manifestations in the form
5

of intermittency with hyperchaos are often clearly observed in
the narrow Q -interval very close to pitchfork bifurcation at Q =

0.68597, see typical examples in Fig. 5.
For coupling strengths greater than the value corresponding to

BP bifurcation, the LC1L2in2s is the only stable attractor over the
Q -interval up to its period doubling (PD1_1) but hyperchaos can
manifest itself as transients if the inhomogeneous cycle is per-
turbed. The durations of transients are often very long depending
on the choice of the initial points.

A further increase in coupling strength reveals the interest-
ing cascade of LC1L2in2s bifurcations: period doubling bifurca-
tion at Q = 0.75 produces a new stable branch of the cy-
cle LC2L4in4s continuation, which, in turn, met the next period
doubling bifurcation at Q = 0.789 (see Fig. 6).

However, in contrast to the expected stable homogeneous
LC4L8in8s, this bifurcation results in the appearance of an unsta-
ble inhomogeneous limit cycle with winding numbers 4L:8out8s,
in which small-amplitude orbits are not in the in-phase regime
any longer as seen in Fig. 6b. We assume that the presence of
two oscillators with in-phase identical orbits in 12-dimensional
phase space complicates the analysis of bifurcations of LC2L4in4s
in this bifurcation point by the AUTO package. We observe, that
the bifurcation identification by XPPAUT depends on the direction
of the continuation along the Q -value and on the limit cycle
selected for the continuation. In particular, PD2_1 bifurcation
at Q = 0.789 is combined with pitchfork bifurcation which
splits two identical trajectories as seen in Fig. 6b. Figuratively
speaking, this bifurcation occurs in 8-dimension subspace and
qualitatively changes the type of the whole attractor. Depending

on these conditions, XPPAUT gives three versions for bifurcations
Fig. 5. Time series (A1 , A2 , A3) show the intermittency between hyperchaos and LC1L2in2s: a. Q = 0.68265, b. Q = 0.68545.
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Fig. 6. The bifurcation continuations of inhomogeneous limit cycles starting
from LC1L2in2s: the lines corresponding to stable (unstable) regimes are green
(blue), respectively. LP2_1 — Q = 0.757; PD1_1 — Q = 0.75; TR1_1 — Q = 0.77;
D2_1 — Q = 0.789; TR1_2 — Q = 0.835; PD2_2 — Q = 0.823; LP2_2 —

= 0.854; PD1_2 — Q = 0.8526. See text for the explanation. Inset b.:
nstable time series of LC4L8out8s extracted in the course of AUTO-continuation
t Q = 0.7675.

Fig. 7. Time series of stable inhomogeneous limit cycles at Q = 0.762: a.
C2L4in4s, b. LC4L8out8s.

D2_1 at Q = 0.789 and PD2_2 at Q = 0.823 (Fig. 6), namely:
eriod doubling, pitchfork and Neimark–Sacker bifurcations. The
ealizations all of them may be observed as the unstable time
eries extracted from the XPPAUT-continuation after these com-
lex bifurcations. The new unstable LC4L8out8s is a result of three
teps: (i) period doubling provides winding numbers 488; (ii) the
oincidence of the small-amplitude trajectories of two Repressi-
ators is broken via pitchfork formation; (iii) stability, expected
fter period doubling of the previous stable cycle, disappears due
o the torus formation. The backward turn of this LC4L8out8s
-continuation branch shows its instability up to the saddle–
ode bifurcation LP2_1 (Q = 0.757) where it becomes stable
eading to the coexistence of two stable inhomogeneous limit
ycles, 2L4in4s, 4L8out8s, located on the ends of two branches
f AUTO continuation over different intervals of the coupling
trength (Fig. 6). The first LC2L4in4s is born in PD1_1 bifurcation
t Q = 0.75; the second LC4L8out8s, in complex PD2_1-BP
ifurcation, being stabilized in saddle–node LP2_1 bifurcation at
= 0.757. Both orbits are presented in Fig. 7.
6

Fig. 8. a. Time series of attractor for α = 2777, Q = 0.808; b. — Poincaré
section.

There is a small region of coupling strength around Q = 0.8
where all inhomogeneous limit cycles are unstable and get mixed
up in the phase space. By way of example, this regime is depicted
in Fig. 8a, 8b. Figure 8a shows randomly chosen time series A1,
2, A3 with the small amplitude variables differing in one part and

coinciding in another part. As can be seen from a Poincaré section
of the long orbit by hypersurface C1 = 5.0 given in Fig. 8b, some
points are located along bisectors S1 = S3 demonstrating exis-
tence of time intervals with in-phase oscillations. Other points
deviate from bisectors revealing the time series intervals where
small-amplitude oscillations are different. This map confirms that
the structure of short trajectories in Fig. 8a is typical of this
attractor. Its first Lyapunov exponent is equal to 0.002 indicating
that the inhomogeneous chaotic regime is too weak to stimulate
the reappearance of hyperchaos.

As the coupling strength increases, the stability of inhomoge-
neous limit cycles is restored by means of the same bifurcations in
which they were born: cycles 2LC4in4s, 4LC8out8s and LC1L2in2s
become stable at Q = 0.823, Q = 0.835 and at Q = 0.8526,
respectively (see right part of Fig. 6). The LC1L2in2s loses sta-
bility via Neimark–Sacker bifurcation at Q = 0.9542 (Fig. 4)
restoring the full dominance of hyperchaos in the system. The
final disappearance of unstable LC1L2in2s occurs via saddle–node
bifurcation at Q = 0.9876.

The interesting and complex dynamic demonstrated for α =

2777 over the interval of coupling strengths between two saddle–
node bifurcations (LP1_1, LP1_2) of LC1L2in2s undergo transfor-
mation when α is varied. The map of regimes in Fig. 2 shows the
torus formation for α > 2777 and Q around 0.7. The hyperchaos
transition to inhomogeneous torus rather than LC1L2in2s at Q =

0.675 was traced by calculating the bifurcation tree and Lyapunov
exponents for α = 3000 (see Fig. 9).

The appearance of the inhomogeneous quasiperiodic regime
is a qualitative change in the hyperchaos evolution after α is in-
creased slightly. As Q increases the torus is replaced by LC1L2in2s
and further dynamics of limit cycles is very similar to that pic-
tured in Figs. 4, 6. When Q is varied in the interval [0.77–
0.84], the cycles lose stability and hyperchaos is back; how-
ever, it alternates with wide stretches of unstable time series of

inhomogeneous limit cycles (see Fig. 9c).
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Fig. 9. Three Repressilators demonstrate the transition hyperchaos to inhomogeneous torus vs the coupling strength Q for α = 3000: a. bifurcation tree obtained
by direct integration with Poincaré section C1 = 5.0; b. The five largest Lyapunov exponents; c. long time series, including the moment of transition and short inset
with orbit for Q = 0.787.
Fig. 10. Two-parameter (α - Q ) continuations of LC1L2in2S bifurcations : two
saddle–node LP1 (black line), LP2 (red line) and period doubling PD1 (blue line).

Two-parameter continuations of the main bifurcations of the
chosen limit cycles are the convenient and powerful method to
demarcate the parameter areas where new modes may appear.
7

For example, two-parameter continuations of the period doubling
PD1(Fig. 4) and two saddle–node LP1 (Fig. 4), LP2 (Fig. 6) bifur-
cation points show a wide area in the (α - Q )-plane where the
regimes starting from LC1L2in2s can be expected. In Fig. 10 this
diagram is presented.

There two-parameter continuations point out the presence of
selected (LP and PD) bifurcations of attractors typical of α = 2777
but they do not guarantee that the structure of one-parameter
continuations, the stability of attractors and the set of attractors
do not vary with α. To clarify the dynamics, it is necessary
to observe the set of regimes by direct numerical simulations
and/or calculation of one-parameter continuations because these
methods are working with the attractors as a whole rather than
with their bifurcation points.

According Fig. 10, a decrease in α causes the stable LC1L2in2s
to disappear via the merging of saddle–node boundary bifurca-
tions. Direct integration confirm this tendency demonstrating the
hyperchaos dominance in accordance with Fig. 2. For α > 2777
the possible parameter area with LC1L2in2s is still large, which
opens the ways for other dynamics. The qualitative changes of
dynamics are manifested as loss of LC1L2in2s stability in the
Q -interval over the left part of the map in Fig. 2 for α > 4000.
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Fig. 11. The bifurcation continuations of inhomogeneous limit cycles starting
from LC1L2in2s for α = 7000: the lines corresponding to stable (unstable)
regimes are green (blue), respectively. LP1_1 — Q = 0.517; LP2_1 — Q = 0.682;
D1_1 — Q = 0.7334; TR1 — Q = 1.005; PD2_1 — Q = 0.7351; PD2_2 —
= 0.936; PD1_2 — Q = 0.9383, TR2 — Q = 0.95; LP2_2 — Q = 0.955.

One parameter Q -continuation of LC1L2in2s for α = 7000 is
resented below (Fig. 11). An increase in α leads to the narrowing
f the Q -interval, where the LC1L2s2s is stable in the right part
f the Q -continuation and to the formation of many bifurcations
f unstable inhomogeneous limit cycles in the left part of the
ontinuation. However, the sequence of key bifurcations that
ontrol the appearance and stability of LC1L2in2s, LC2L4in4s and
C1L4L8out8s coincides with that for α = 2777.
Although hyperchaos is the dominant attractor over almost all

nterval of coupling strengths, the role of the unstable inhomoge-
eous limit cycles is clearly seen in hyperchaotic orbits. By way of
xamples, we present the time series for Q = 0.6 and Q = 0.85
here there are two and three different unstable inhomogeneous

imit cycles, respectively (Fig. 12). Hyperchaos orbits include a
andom sequence of stripes with pieces of inhomogeneous unsta-
le limit cycles. The closer Q to the values corresponding to the
nhomogeneous limit cycles stabilization (PD2_2 at Q = 0.936
ig. 11), the smaller the deviations of the limit cycles multipliers
rom unity and the longer the durations of the bands filled with
nhomogeneous cycles.

To calculate the distributions of these stripe widths we use
oincaré sections of the time series with fixed value Acr for vari-
bles A , A , A . The Acr values are chosen close to but somewhat
1 2 3

8

ower than the variables amplitudes (as presented in Fig. 12)
o avoid crossing small amplitude oscillations by the Poincaré
ection. The comparison of the return times distributions for Q =

.6 and for Q = 0.85 shows that the long inhomogeneous limit
ycles parts in hyperchaos are significantly presented over a wide
nterval of the coupling strengths, being especially pronounced
or strong coupling.

. Conclusions and discussion

A lot of publications describe the appearance of collective
symmetric regimes in systems of coupled identical oscillators.
he coexistence of these regimes with symmetric attractors de-
ends on the type of oscillators and the schemes of their cou-
ling. One early example was given by Tyson and Kauffman [34]
ho found asymmetric limit cycles in their study of two dif-

usely coupled identical Brusselators which, as later was found,
emonstrate many other regimes [35].
Since that time transitions from inhomogeneous steady state

r homogeneous limit cycle to inhomogeneous limit cycle have
een intensely studied in coupled identical oscillators (see [36,37]
nd references therein). Recently, we have demonstrated that
here are wide regions of parameters controlling the dynamics of
wo and three quorum sensing coupled Repressilators where the
table inhomogeneous steady states (typically named ‘‘oscillation
eath’’) are formed, as well as inhomogeneous limit cycles born
rom them via Andronov–Hopf bifurcation [21,22]. In [38], we
xplore a new type of inhomogeneous limit cycle recently found
n two QS-coupled identical Repressilators after their amplitudes
ere increased. This cycle originates from the pitchfork bifurca-
ion of the unstable in-phase limit cycle, has winding number
:2 and very different oscillation amplitudes. It dominates phase
pace over significant intervals of model parameters and coexists
ith many symmetric limit cycles and a chaotic regime.
In the system of three QS-coupled Repressilators, hyperchaos

s the dominant regime if the coupling strength is greater than
ome critical value [12]. However, we demonstrate that a family
f strongly asymmetric collective regimes exist over wide inter-
als of the coupling strength Q and α for a given set of other
odel parameters. Hyperchaos is replaced by one of the stable
ttractor from this family as the model parameters are varied.
n any case the final attractor is stable LC1L2in2s which turns to
C2L4in4s via period doubling bifurcation. Further evolution of
Fig. 12. Time series and corresponding return times (Tn) distributions for α = 7000 for Tn > 200. Acr is the Poincaré section level: a. Q = 0.6, Acr = 115; b.
Q = 0.85, Acr = 75. The grid lines show the positions of Poincaré sections.
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he dynamics is different from the well-known Feigenbaum cas-
ade because the next bifurcation not only doubles the oscillation
eriod but also initiates a new inhomogeneous cycle LC4L8out8s
ith nonidentical orbits with small amplitudes. Both cycles are
table and coexist over short parameter intervals converting to
nhomogeneous chaos or returning to hyperchaos outside these
ntervals. The existence of these inhomogeneous attractors in the
arameter window surrounded by hyperchaos manifests itself
n the hyperchaos ‘‘skeleton’’ as the formation of asymmetric
arts (pieces) in the timeseries. They are often observed not
nly in the long transients to stable inhomogeneous cycles (see
.g. Fig. 5) but even in stationary hyperchaotic orbits for the
arameter intervals where all inhomogeneous cycles are unstable
see e.g. Fig. 12b).

As discovered recently, chimera states can exist in the system
f small number identical oscillators [39–42]. In particular, mini-
al chimeras were found in all-to-all coupled modified Kuramoto
hase oscillators with inertia [40] and in phase-lag coupled three
etronomes [41]. These interesting regimes manifest themselves
s a mismatch of average frequency between two synchronous
nd one desynchronized oscillator. Apart from this, the small
himeras have been discovered as symmetry-breaking rhythms
n coupled identical fast–slow oscillators due to the presence
f canard explosion in their ODE systems [42,43]. In contrast,
nhomogeneous limit cycles in QS-coupled Repressilators have
he same period and the asymmetry arises due to very different
mplitudes. It is worth mentioning that LC1L2in2s is different
rom the standard partial-in-phase [24,26,27] limit cycle typically
bserved in three repulsively coupled identical oscillators. In
his paper, we show that three simple 3-variables identical ring
scillators coupled by mean-field diffusion of signal molecules,
hich are produced proportionally to the concentration of one
ariable and activate the production of the downward variable,
ive interesting inhomogeneous limit cycles, quasiperiodic and
haotic oscillations with two identical orbits over significant areas
f the parameter plane. We suggest that these results may stimu-
ate the development of similar designs for oscillators interactions
ocused on generating regimes with broken symmetry.
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