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We investigate the dynamics of three identical three-dimensional ring synthetic genetic oscillators (repressilators) lo-

cated in different cells and indirectly globally coupled by quorum sensing whereby is meant a mechanism in which

special signal molecules are produced that, after the fast diffusion mixing and partial dilution in the environment, ac-

tivate the expression of a target gene which is different from the gene responsible for their production. Even at low

coupling strengths, quorum sensing stimulates the formation of a stable limit cycle, known in the literature as a rotating

wave (all variables have identical waveforms shifted by one third of the period), which, at higher coupling strengths,

converts to complex tori. Further torus evolution is traced up to its destruction to chaos and the appearance of hy-

perchaos. We hypothesize that hyperchaos is the result of merging the saddle-focus periodic orbit (or limit cycle)

corresponding to the rotating wave regime with chaos and present considerations in favor of this conclusion.

With an increase in the number of unstable directions,

multi-dimensional systems develop chaos and even hyper-

chaos characterized by two or more positive Lyapunov

exponents. The key point in studying the hyperchaotic

attractors is analysis of the chaotic attractor skeleton

and the bifurcation mechanisms whereby attractors with

multi-dimensional unstable manifolds are formed. One

of the bifurcation giving rise to a saddle cycle with a

two-dimensional unstable manifold is the Neimark-Sacker

bifurcation, which leads to torus formation. Torus de-

struction via the Afraimovich-Shilnikov scenario gener-

ates chaos with one positive Lyapunov exponent. If the

saddle cycle resulting from the Neimark-Sacker bifurca-

tion is absorbed by a chaotic attractor, then hyperchaos

may develop. This scenario was observed both in the dy-

namics of isolated and in coupled oscillators.

Here, we investigate the emergence of hyperchaos in

a system of three identical ring oscillators (Repressila-

tors) that are used to build synthetic genetic networks.

The maximally reduced model of the isolated three-

dimensional Repressilator of three genes demonstrates a

smooth limit cycle over a wide range of model parameters.

Repressillators embedded into different individual cells in-

teract by the quorum sensing (QS) mechanism, in which

signal molecules synthesized under the control of one of

the genes quickly diffuse into a common environment and

can take control of the expression of another gene in the

ring. Such a scheme is realistic for genetic circuits and

principally differs from linear diffusion of phase variables

typically used in studies of collective regimes.
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As known for the system of two identical Repressilators,

QS interactions make possible the birth of inhomogeneous

limit cycles (i. e. with different amplitudes), tori, and the

emergence of large regions of parameters where chaos and

multistability dominate. For three identical Repressilators

we also use the QS scheme, in which weak coupling en-

sures the formation of a limit cycle in the form of a rotating

wave. The evolution of the system with an increase in the

coupling strength leads to the Neimark-Sacker bifurca-

tion, which gives rise to a torus and turns the rotating wave

cycle into a saddle-focus cycle with a two-dimensional un-

stable manifold. Then, torus destruction produces chaos,

which turns into hyperchaos after merge with the saddle-

focus cycle.

I. INTRODUCTION

Hyperchaos has been the subject of research for long time

and many routes to its formation has been discovered. Start-

ing from the famous paper1, many successful attempts to get

hyperchaos in isolated four-dimensional dynamical systems

have been realized due to adding at least one variable to clas-

sical Rössler, e.g.1,2, and Lorenz e.g.3,4 systems. Several au-

tonomous hyperchaotic oscillators were not only investigated

using bifurcation analysis but realized in electronic circuits5,6.

In recent works7,8 it has been shown that hyperchaos appears

in the modified four-dimensional Anishchenko-Astakhov gen-

erator.

Other examples of hyperchaos emergence have been found

during the studies of coupled systems. In particular, cou-

pled chaotic oscillators demonstrate hyperchaos: in the ring of

Chua’s circuits9; in two Rössler’s oscillators coupled by linear

diffusion of one variable10–12; in Colpitts oscillators coupled

by means of two linear resistors13. Hyperchaos was demon-

strated via numerical simulations and hardware experiments:

bi-directional non-linear coupling, symmetric with respect to
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the state variables, results in the appearance of hyperchaos in

two identical Chua’s circuits14.

There are publications in which hyperchaos arises in cou-

pled regular oscillators stimulated by external periodic oscil-

lation. For example, in the well-known paper15 it has been

shown that two directly linearly coupled van der Pol oscil-

lators under the same common periodic stimulation demon-

strate hyperchaos among as one of the other attractors. Re-

cently chaos and hyperchaos have been found in coupled an-

tiphase driven Toda oscillators16. In16 three possible routes

to hyperchaos were discussed. One of them (for weak cou-

pling strength) related to the scenario which was observed

for coupled chaotic systems. Driven Toda oscillator is well-

known example of a model demonstrating transition to chaos

via cascade of period-doubling bifurcations at increasing of

external force amplitude. For stronger coupling strength an-

other scenario of hyperchaos occurrence was observed asso-

ciated with torus destruction. Last scenario was discussed

in7,8 for the simplest four-dimensional autonomous model of

radiophysical generator17 and model of two interacting mi-

crobubble contrast agents under ultrasound stimulation18. It

was shown that torus destruction can lead to formation of dis-

crete Shilnikov’s chaotic attractor as a result of absorption

of saddle cycle with two-dimensional unstable manifold ap-

peared at torus birth19–21. Saddle cycle with two-dimensional

unstable manifold contributes to chaotic attractor leading to

hyperchaos.

Other route to hyperchaos has been investigated in the ring

of unidirectionally coupled identical Duffing oscillators which

are in stable steady state without coupling. Detailed anal-

ysis of dynamics in the presence of linear cross-diffusion

has demonstrated a classical cascade: periodic, quasiperiodic,

chaotic and hyperchaotic attractors partially verified in a sim-

ple electronic experiment22.

We assume that it would be important to consider other

types of simple regular oscillators and new types of coupling

schemes that provide the interesting route to hyperchaos for-

mation. Here we explore long known the three-dimensional

ring oscillator which attracted attention after its realization

in the form of real synthetic genetic circuit implemented in

bacteria under name "Repressilator"23–25. We use the sim-

plest version of Repressilator constructed from three genes, a,

b and c, which negatively regulate each other’s transcription

in a cyclic fashion, namely a regulates b, b regulates c and

c regulates a (see Fig. 1a). The regulation is performed by

the transcription factors, or repressors, A, B and C, coded by

genes a, b and c, respectively. The first mathematical model

demonstrating oscillation in this circuit has been presented al-

ready in23 followed by publications with rigorous mathemat-

ical analysis26,27. Repressilator’s limit cycle remains stable

over very large areas of its control parameters and does not

demonstrate period doubling bifurcations.

Synthetic genetic oscillators are very important motif for

genetic engineering and in many applications the effectiveness

of oscillations strongly depends on the collective modes they

can form to escape averaging of oscillations in population of

cells with oscillators inside.

Soon after publications on different genetic oscillators, the

"quorum sensing" mechanism of bacterial communication has

been suggested to couple them28,29. Bacterial quorum sensing

(QS) which provides for communications in bacterial popu-

lations by fast diffusion of small specific molecules (autoin-

ducers), is a natural candidate for the role of being a manager

for synthetic genetic network dynamics. This idea was effec-

tive, for instance, in constructing several synthetic multicel-

lular systems like the ecological predator-prey30, population

control31, and other models (see references in a review32). In-

teresting examples of the QS-stimulated synchronization of

population of real genetic clocks33 and of modeled biologi-

cally plausible coupled circuits have been published during

the last decade34.

In 2007, another version of the QS mechanism was inte-

grated into the 6-dimensional Repressilator model35. Studies

of two coupled identical Repressilators revealed very com-

plex dynamics in significant areas of control parameters36–38.

Weakly coupled repressilators oscillate in antiphase and this

limit cycle loses stability via Neimark-Sacker bifurcation.

With the increasing coupling strength, the formation of a rich

family of resonant cycles with different winding numbers is

observed. In addition, an unexpected strongly inhomogenous

limit cycle arises which is not only stable over a wide domain

of parameter plane but also can coexist with symmetric at-

tractors. Its stability is ruled by period-doubling or Neimark-

Sacker bifurcations, which leads to chaos.

At the expense of chaotization, the symmetry of time se-

ries tends to restore in the form of generation of random al-

ternations of time intervals with asymmetric pieces, which

reflects the domination of the chaos framework by unstable

inhomogeneous periodic orbits (UPO) in certain parameter

areas. Interestingly, despite the demonstration of rich mul-

tistability, chaotization of different regimes and the presence

of many UPO in 8-dimensional phase space of two Repres-

silators, no manifestation of hyperchaos was detected in the

parameter space studied.

Recently, we have considered torus evolution as a function

of the coupling strength for three QS-coupled Repressilators

and detected some precursors of hyperchaos39. However, the

control parameter of the transcription rate was varied only in a

limited range. Here we extend the area of control parameters

to study the transition from chaos to hyperchaos in more detail

by scanning the parameter plane and computing the spectrum

of Lyapunov exponents. A large region was found where hy-

perchaos is clearly seen.

For three coupled identical Repressilators we start analysis

with the stable limit cycle corresponding to the rotating wave

regime (RW). It loses stability via Neimark-Sacker bifurca-

tion which leads to the appearance of two-frequency torus.

To clarify the mechanism of hyperchaos formation we traced

tori’s evolution and destruction into chaos and the following

chaos evolution with the increasing coupling strength. Then,

the distance between unstable RW cycle and chaotic attractor

was calculated and the critical value of coupling strength for

merging saddle-focus limit cycle (RW) with chaos was deter-

mined. Their merge initiates hyperchaos formation.
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FIG. 1. a. Principle scheme of three quorum-sensing coupled Repressilators. Ai, Bi, Ci are proteins in each Repressilators; ai, bi, ci are mRNAs

produced by three genes; AIi are autoinducers and Si are their concentrations. b. Chart of regimes revealed by values of Lyapunov exponents

for model (1). The steps of parameters during scanning are: hQ = 0.001, hα = 23. P is periodic oscillations (red), T2 is two-frequency

quasiperiodic oscillations (yellow), C, C0, HC are chaotic regimes with different signatures of Lyapunov exponents spectrum (grey, black,

white)

II. OBJECT OF INVESTIGATION AND METHODS

As the basis we use a reduced version of the model de-

scribed earlier (see36–38 for details) and adapted for three

three-dimensional Repressilators coupled via autoinducer

production and diffusion. Figure 1 shows three Repressila-

tors located in different cells (or other appropriate contain-

ers impermeable to repressors) and coupled via QS exchange

with the external medium. The three genes in the ring pro-

duce mRNAs (a, b, c) which are translated to proteins (A, B,

C), and they impose Hill function inhibition on each other in

a cyclic order by the preceding gene. The QS feedback is

maintained by the AI produced (rate kS1) proportionally to the

protein B concentration while the autoinducer (AI) commu-

nicates with the environment and activates (rate κ in combi-

nation with Michaelis function) the production of mRNA for

protein C, which, in turn, reduces the concentration of pro-

tein A, which results in the activation of protein B production.

In this way protein B plays a dual role of direct inhibition of

protein C synthesis and AI-dependent activation of protein C

synthesis, resulting in complex dynamics of the Repressilator,

even for a single Repressilator40. The resulting equations for

dimensionless repressors (A, B, C) and autoinducer (S) con-

centrations are:

Ȧi = β1(−Ai +
α

1+Cn
i
),

Ḃi = β2(−Bi +
α

1+An
i
),

Ċi = β3(−Ci +
α

1+Bn
i
+ κSi

1+Si
),

Ṡi =−kS0Si + kS1Bi −η(Si −Sext),

(1)

where i = 1,2,3 are subscripts for the three Repressilators,

β j ( j = 1,2,3) are the ratios of the protein decay rate to the

mRNA decay rate, α stands for the maximum transcription

rate in the absence of the inhibitor, and n is the Hill cooperativ-

ity coefficient for inhibition. For the quorum sensing pathway

kS0 is the ratio of the S decay rate to the mRNA decay rate,

and as previously mentioned, kS1 is the rate of production of

S: κ gives the strength of S-dependent activation of protein C

production. The diffusion coefficient η depends on the mem-

brane permeability to the S molecule. The concentration of S

in the external medium Sext is determined (in a quasi-steady

state approximation) by S produced by all the Repressilators

(S1, S2, S3) and a dilution factor Q:

Sext = Q
S1 +S2 +S3

3
. (2)

The model parameters are fixed identical for each Repressila-

tor and close to what was proposed in41: β1 = 0.5, β2 = β3 =
0.1, n = 3, kS0 = 1, kS1 = 0.01, η = 2, κ = 15. As a control

parameter, we use the coupling strength Q and the maximum

transcription rate in the absence of inhibitor α .

When Q = 0 each of the oscillators is a self-sustained el-

ement. The amplitude of the limit cycle is regulated by the

parameters α , β . With a small coupling in the ensemble (1),

the so-called rotating wave (RW) solution is observed, when

the time series of each repressor are the same, but are shifted

relative to each other by a third of the period. Increasing of

the coupling Q and amplitude leads to a complication of the

dynamics. Analysis and classification of possible types of dy-

namics can be carried out using the spectrum of Lyapunov

exponents. Figure 1b shows a chart of the Lyapunov expo-

nents of the model (1), on which the colors indicate areas of

different dynamics depending on the values of the Lyapunov

exponents. Lyapunov exponents were calculated using the al-

gorithm proposed in42. The value ε = 10−4 was used as the

threshold value for determining zero. The following types of

behavior are classified:

• periodic oscillations (P), red color, Λ1 = 0, 0 > Λ2 >

Λ3 > Λ4 > Λ5 > Λ6 > Λ7 > Λ8 > Λ9 > Λ10 > Λ11 >

Λ12;

• two-frequency quasiperiodic oscillations (T2), yellow
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color Λ1 = Λ2 = 0, 0 > Λ3 > Λ4 > Λ5 > Λ6 > Λ7 >

Λ8 > Λ9 > Λ10 > Λ11 > Λ12;

• three-frequency quasiperiodic oscillations or points

near torus doubling bifurcations (T3), blue color Λ1 =
Λ2 = Λ3 = 0, 0 > Λ4 > Λ5 > Λ6 > Λ7 > Λ8 > Λ9 >

Λ10 > Λ11 > Λ12;

• chaotic oscillations (C), grey color, Λ1 > 0, Λ2 = 0, 0 >

Λ3 > Λ4 > Λ5 > Λ6 > Λ7 > Λ8 > Λ9 > Λ10 > Λ11 >

Λ12;

• hyperchaotic oscillations (HC), white color, Λ1 > Λ2 >

0, Λ3 = 0, 0 > Λ4 > Λ5 > Λ6 > Λ7 > Λ8 > Λ9 > Λ10 >

Λ11 > Λ12;

• chaotic oscillations characterized by an additional zero

Lyapunov exponent in the spectrum (C0), black color,

Λ1 > 0,Λ2 = Λ3 = 0, 0 > Λ4 > Λ5 > Λ6 > Λ7 > Λ8 >

Λ9 > Λ10 > Λ11 > Λ12.

The chart shown in Fig. 1b was constructed by scanning

the parameter plane with adiabatic initial conditions and in-

creasing in the parameter α: we take fixed initial conditions

for each new value of Q at α = 0 corresponding to limit cycle

RW-solution and then for each new value of α we take ini-

tial conditions from last step of previous α . Such calculations

do not give a complete analysis of the dynamics but show the

general layout of the mode map for further detailed study. The

three-frequency quasiperiodic regime T3 and chaos with addi-

tional Lyapunov exponent C0 revealed by scanning are stable

over very narrow parameter intervals. They are not essential

for hyperchaos formation.

The analysis of the structure of the parameter plane shows

that Neimark-Sacker bifurcation of the limit cycle corre-

sponding to the rotating wave (RW) results in two-frequency

quasiperiodic oscillations formation along the line crossed

all considered parameter plane. For small coupling strength

along the Neimark-Sacker bifurcation line, synchronization

tongues are observed. The destruction of quasiperiodic os-

cillations leads to the formation of chaotic dynamics. Chaotic

dynamics arises in a certain intervals of the coupling parame-

ter, which become longer with an increase in the parameter α .

The chaotic attractor then develops into a hyperchaos which

dominates. Next, we will consider in more detail the mech-

anism of transformation of a chaotic attractor into a hyper-

chaotic one and the roles of various regimes in this process.

III. BASIC SOLUTIONS IN THREE COUPLED

IDENTICAL SYSTEMS

Ashwin et al.43 presented theoretical and experimental in-

vestigation of three identical oscillators with weak symmetric

coupling and observed stable in-phase limit cycle and a stable

rotating waves (RW). Three coupled chemical oscillators in a

triangular arrangement demonstrated the following set of peri-

odic regimes: three oscillators are running in-phase (InP), two

in-phase oscillators out of phase with the third one (2in-1out)

asymmetric limit cycle and RW, see e.g.44. A ring of three

Fitzhugh-Nagumo-like relaxation oscillators coupled via dif-

fusion of slow (recovery) variables can oscillate in-phase, in

an RW regime and in asymmetric 2in-1anti limit cycle45. Nu-

merical analysis and experiments with three electronic relax-

ation voltage-coupled oscillators show the successful persis-

tence of the above-mentioned collective regimes in the pres-

ence of small detuning46.

FIG. 2. Illustrations of trajectories in model (1): a. - stable rotating

wave time series for Q = 0.01, α = 2777; b. - bifurcation tree in

cross-section by hypersurface C1 = 5.0 for α = 2777, shown along

with Q-parameter AUTO continuation of stable RW (blue line) and

unstable one (orange line); c. - time series for two-frequency torus,

Q = 0.1, α = 2777. (gaps in the tree picture are for the data still

being computed).

The structure of Repressilators and the scheme of QS-

coupling between them differ from those used in previous

publications, which made it necessary to check the appearance

of stable periodic regimes in the weakly coupled Repressila-

tors.

For given intervals of model parameters the in-phase limit

cycle is not stable because a repulsive tendency dominates the

coupling35,36. The RW stability observed in our system (1)

for α < 400 (it was considered in39) takes place over all α
considered (see Fig.1b); the time series of RW for α = 2777

is depicted in Fig. 2a. The RW stability interval vs coupling

strength is bounded by Neimark-Sacker bifurcation (TR) (see

the bifurcation tree and Q-parameter bifurcation diagram of

limit cycle RW obtained with help of AUTXPP software47 in
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Fig. 2b). The bifurcation tree is calculated using the cross-

section by hypersurface C1 = 5.0 and is presented as three

same name dynamic variables of each repressilators (red, blue

and green). AUTO-continuation demonstrates the maximum

amplitude of the first variable A1: light blue is a stable RW-

solution RW(11,0); orange line, saddle solution RW(9,2).

Scale for Amax
1 is shown on the right; scale for Ai in Poincaré

section by hypersurface C1 = 5, on the left. These scales are

also used in other Figures below. Indices (m, n) denote the sta-

bility type of cycles, with m being dimension of stable mani-

fold, and n, of unstable manifold. After torus destruction the

dynamics is non-regular (Fig. 2c) but still resembles the rotat-

ing wave solution, because the order of variables is retained

and the phase shifts between oscillators do not strongly fluc-

tuate.

FIG. 3. Illustrations of 2in-1out 8-dimensional solution AS2in-1out

for model (1) with winding number 1:1:1: a. - time series for Q =
0.01, α = 2777; b. - bifurcation tree and AUTO continuation (light

green (stable) and pink (unstable) lines) for α = 2777.

The simplest way to determine the existence of asymmet-

ric limit cycles is to choose identical initial phase points for

two oscillators. Phase space reduction leads to detecting an

8-dimensional limit cycle (AS2in-1out(10,1)) with a winding

number of 1:1:1. All asymmetric solutions (further we will

show limit cycles AS2in-1out and AS3, torus, chaos) are for-

mally 12-dimensional, but we will use expressions "8D cycle"

and "8D chaos" because the equalization of phase variables

of two oscillators effectively reduces 12-dimensional phase

space to 8-dimensional. Time series of AS2in-1out(10,1) cy-

cle are presented in Fig.3a. This cycle is invisible among

regimes in Fig.1b calculated using 12-dimensional random

initial points, because any perturbations of identity of two in-

phase oscillators destroy AS2in-1out. Despite this specific fa-

tal sensitivity, an increase in coupling strength results in bi-

furcation of cycle AS2in-1out (see Fig. 3b) which can be im-

portant for the general dynamics due to the appearance of 8-

dimensional chaos at Q = 0.4. Further transformations of the

cycle are associated with Neimark-Sacker bifurcation (TR)

and Afraimovich-Shilnikov’s scenario of torus destruction48.

Notice that in this case we deal with the cycle that has one-

dimensional unstable manifold AS2in-1out(10,1) and trans-

forms to the cycle with three-dimensional unstable manifold

AS2in-1out(8,3) via Neimark-Sacker bifurcation.

FIG. 4. Illustrations of 2-in-1-out 8-dimensional period-3 for model

(1): a. - time series of AS3 for Q = 0.22, α = 2777; b. - AUTO

Q-continuation of AS3 cycle: stable (green) and unstable (red) limit

regimes; bifurcation tree of the same cycle AS3 in interval LP1-LP2

and tree for AS1-2 after Q > Q(LP2).

This eight-dimensional solution in the system (1) is not

the only one. With an increase in coupling, for example,

one can observe another asymmetrical saddle cycle of period

three (AS3), for which two oscillators are completely syn-

chronous, and the third one is in anti-phase with them (see

Fig.4a). Fig. 4b shows the one-parameter AUTO continuation

and bifurcation tree for this cycle as a function of Q. As a

result of the saddle-node bifurcation at Q = 0.2191 (LP1), a

pair of saddle cycles arises: one has a one-dimensional un-

stable manifold AS31(10,1) (upper line of Q-continuation in

Fig. 4b), and the other has a two-dimensional one AS32(9,2)

(lower part of Q-continuation). With an increase in coupling,

cycle AS31(10,1) undergoes a cascade of period doubling bi-

furcations starting from PD1 which transforms AS31(10,1)

into cycle AS31(9,2) at Q = 0.257 (see inset in Fig. 4b). The

cascade of period-doubling bifurcations leads to weak chaos

which undergoes crisis at Q ≈ 0.295.

The similar evolution of the dynamics is observed when we

start from the right side of the period-3 region. The backward

Q-continuation shows that at Q = 0.3855 saddle-node bifur-

cation (LP2) occurs giving rise to two cycles: AS31(10,1) and

AS32(9,2). Cycle AS31(10,1) transforms to chaos via period-

doubling bifurcations and at Q ≈ 0.319 the chaotic attractor

disappears and the system goes to the 8-dimensional period-1

cycle AS2in-1out-1. Both cascades are illustrated in Fig. 4b as
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FIG. 5. Poincaré sections obtained by hypersurface C1 = 5.0 for two types of 8D chaotic solutions: a. born via period-doubling bifurcations

cascade of AS2in-1out cycle at Q = 0.28; b. born via destruction of torus born from cycle AS3 at Q = 0.45. c. Time series for 8D chaotic

attractor, Q = 0.45.

AS3(10,1) AUTO continuation and bifurcation trees for AS3.

Interestingly, for α = 2777 the chaotization of the cycle

AS3 brings about a gap in its bifurcation tree. The crisis of

AS3-dependent chaos may occur due to amplitude growth of

chaotic trajectories so that they can cross the boundary of the

basin of the dominant stable 8-dimensional cycle 2in-1out.

Therefore, inside the gap the bifurcation tree is represented

by only one line corresponding to the AS2in-1out cycle. The

branch of the unstable cycle AS32(9,2) does not undergo bi-

furcations, it merges with AS31 as a result of saddle-node bi-

furcations LP1, LP2.

Thus, we show the presence of various solutions that can

form the skeleton of a chaotic attractor and thereby determine

the type of this attractor. Furthermore, we can see the forma-

tion of an 8D chaotic attractor, which also has its own skele-

ton. In Fig.5 two examples of chaotic attractors are presented.

Fig. 5a and 5b give the Poincaré maps of the 8-dimensional

chaotic saddle manifold. Fig.5a demonstrates chaos born

via a cascade of period doubling bifurcations of saddle cy-

cle of period-3 AS31. Another chaos presented in Figs. 5b,

5c emerges via Neimark-Sacker bifurcation of AS2in-1out

period-1 cycle and destruction of the newly born saddle torus.

In the next section, we consider the emergence of chaotic at-

tractors, as well as the mutual arrangement of the cycles and

their influence on the dynamics.

IV. HYPERCHAOS RESULTING FROM THE

FORMATION OF THE SHILNIKOV’S ATTRACTOR

Fig. 1 clearly demonstrates the presence of hyperchaos over

wide areas of parameters Q−α . The amplitude of oscillations

in our system (1) is mainly controlled by parameter α , the rate

of repressors production. In39 it was shown that at small α the

detection of hyperchaos is unreliable due to very small values

of positive Lyapunov exponents.

For α = 2777 the evolution of hyperchaos is traced in de-

tail (Fig. 6) via analysis of Poincaré maps for critical values

of coupling strength where qualitative changes of Lyapunov

exponents are observed (Fig. 6a).

Figure 6b shows an enlarged fragment of the graphs of the

three largest Lyapunov exponents in the Q-region where the

primary torus destruction and the formation of a chaotic at-

tractor take place; marked are the basic bifurcations leading

to chaos development. As can be seen from the graphs of

Lyapunov exponents, the RW is well diagnosed (the largest

exponent is close to zero, the next two are negative and equal

to each other, and the fourth exponent is less than -0.02 and

is not visualized in Fig. 6b). At Q ≈ 0.048 Neimark-Sacker

bifurcation (TR) leads to the two-frequency torus displayed in

Fig. 6c. Then, we observe a sequence of saddle-node bifurca-

tions (LP1, LP2, LP3), which are the boundaries of Arnold’s

tongues for resonant cycles. Undergoing this sequence of

saddle-node bifurcations, the quasiperiodic regimes persist

through it; however, they become more complex (Fig. 6d).

For some intervals of parameters α and Q the evolution of the

tori and the possibility of bistability between the two tori were

preliminary considered in49.

As a result of the saddle-node bifurcation (LP4), a reso-

nance cycle of period 23 is born on the torus surface (Fig. 6e).

After passing through resonant tongues, the maps become

more complex and gradually becomes non-smooth approach-

ing a collapse in accordance with the Afraimovich-Shilnikov

scenario. Fig. 6f shows an example of a Poincaré map for

the nonsmooth torus; Fig. 6g corresponds to a chaotic regime,

which is characterized by one positive, one zero and 10 nega-

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
56

90
7



7

FIG. 6. Illustrations of hyperchaos formation. a., b. Plots of Lyapunov exponents versus the coupling strength, and Poincaré maps. α = 2777,

c. - Q = 0.05, d. - Q = 0.11, e. - Q = 0.12, f. - Q = 0.121, g. - Q = 0.15.

tive Lyapunov exponents.

After the torus destruction, the graphs of Lyapunov expo-

nents show an interval Q(0.23 - 0.26), within which the largest

Lyapunov exponent is positive, the second and the third expo-

nents are very close to zero. Within the specified interval, the

second and third exponents fluctuate near zero value and at

Q ≈ 0.26 the third exponent becomes zero, and the second

is positive. This interval corresponds to the region in the pa-

rameter plane where there are all three solutions discussed in

Section III. The absorption of a saddle-focus cycle with a two-

dimensional unstable manifold by a chaotic attractor can lead

to the development of hyperchaos.

To test this hypothesis, the trajectories of the saddle cycles

were extracted using their AUTO-continuations, their two-

dimensional projections onto (A1, S1) plane in Poincaré sec-

tions were found and presented together with the maps of

chaos in Figs. 7a-7c (colored dots).

We focus on the evolution of the fixed point for the cycle

RW(9,2) which is expectedly more important for hyperchaos

formation due to the two multipliers greater than one. As ob-

vious from Fig. 7a, the chaotic attractor is distanced from the

fixed point of the saddle-focus RW cycle for Q = 0.2 (green

point). As the coupling increases, the chaotic attractor ap-

proaches this fixed point and merges with it at least in this

plane. Note that the phase space is 12-dimensional and the

results observed in two-dimensional Poincaré section should

be supported by calculations in the full phase space. To be

sure of approaching a chaotic attractor, we computed the min-

imum distance from the fixed point for RW(9,2) to the chaotic

attractor in the full phase space. The values DSF of the dis-

tances are presented in Table 1 together with the values Λi of

the four largest Lyapunov exponents.

When the coupling strength Q changes from 0.2 to 0.2974,

the distance from the chaotic attractor to the fixed point of

saddle-focus cycle in the Poincaré map decreases from 15.876

to 1.627. Although the distance is not very close to zero,

Q Λ1 Λ2 Λ3 Λ4 DSF DS1

0.2 0.005 0.0 −0.003 −0.017 15.88 0.0

0.2295 0.006 0.0 −0.001 −0.019 10.80 0.046

0.2974 0.008 0.004 0.0 −0.022 1.63 0.207

TABLE I. The four largest Lyapunov exponents (Λi) and minimal

distance from chaotic map to saddle-focus point (DSF ) and to 8D

period-1 saddle point (DS1).

this strong reduction in distance increases the probability of

merging saddle-focus RW-cycle with chaos. Note that for

calculation of the distance the RW(9,2) cycle time series is

fixed as prescribed by the AUTO method. This may give

the distance between the cycle and chaos slightly overesti-

mated whereas the time series fluctuations of real RW(9,2)

can overlap this gap. Such return times distributions are fre-

quently used for estimating Lyapunov exponents and entropy

of dynamical models50 and also for detecting rare and extreme

events51.

The suggested merging may stimulate the appearance of

unstable RW in hyperchaotic trajectories. Specific unstable

periodic orbits (UPO) in 12-dimensional phase space are not

easy to identify, but phase relations between RW variables of

three oscillators and their amplitudes are rather different from

those for chaotic regime, making it possible to distinguish

them. Although the probability of RW formation is not large,

these random UPOs are reliably observed near Q = 0.27 (see

examples in Fig. 8a, 8b) whereas any similar parts are absent

for coupling strength before chaos-hyperchaos transition.

Direct visualization of RW limit cycle elements can be sup-

plemented by assessing the changes in return times distribu-

tions before and after chaos-hyperchaos transition at an ap-

propriately chosen level of a Poincaré section. Such return

times distributions are frequently used for the estimations of

Lyapunov exponents and entropy of the dynamical models52.
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FIG. 7. The maps of chaos and the fixed points in Poincaré section for the limit cycles for a. Q = 0.2, b. Q = 0.2294, c. Q = 0.2975. Chaotic

attractors are depicted by red color, saddle-focus RW(9,2) - green dot, 8D saddle cycle AS2in-1out(10,1) - blue dot, pair of 8D saddle cycles

AS31 and AS32 - black and grey dots correspondingly.

FIG. 8. Examples of random manifestation of unstable RW segments

in time series of hyperchaotic attractor for a. Q = 0.272; b. Q=0.3.

We build one-dimensional map using standard Poincaré sec-

tion of variables Bi. The RW limit cycle is unstable but, as

seen in Fig.8, fluctuations of Bi amplitudes are not large and

limited compared with other oscillation maxima prompting to

choose Bi-sections going slightly above the parts of the RW

cycle. According to the examples in Fig. 8, the collection of

return times calculated for the section of hyperchaotic time

series at a level of Bi = 230−240 should contain the longest

return times because this level is higher than RW amplitudes.

To choose this level more accurate, the large number (20000)

return times were calculated for Q = 0.23 that corresponds

to chaotic attractor just before its transition to hyperchaos

(Fig. 9a). We focus on the T (n) distribution after T (n)=100

which shows the maximum T (n) to be near T (n)=275.

The same calculations of T (n) made after transition of the

system to hyperchaos, e.g. for Q = 0.27, show a very similar

distribution for T (n) < 275 and the robust presence of T (n) >

310 (Fig. 9b). The same changes of T (n) are illustrated using

FIG. 9. The distributions of return times and the sequential period

maps: a., c. - Q = 0.23; b., d. - Q = 0.27.

sequential period maps in Fig. 9c, 9d. We argue that these rare

long intervals are the manifestation of the longest RW pieces

in hyperchaos because the return times generated by shorter

RW pieces cannot be distinguished from those in chaos.

In addition to 12-dimemsional RW(9,2), we observed 8-

dimensional period-3 limit cycle and its bifurcations up to a

weak 8-dimensional chaos in the interval of Q between 0.2

and 0.345 (Fig. 4b) which overlaps with the area where chaos-

hyperchaos transition takes place. Figure 7 shows the fixed

points for these cycles with one-dimensional (black) and two-

dimensional (gray) unstable manifolds. In the (S1, A1) pro-

jection these points touch the chaotic map, suggesting that the

AS3(9,2) cycle may affect the hyperchaos formation. The ex-

istence of this cycle strongly requires that phase points and pa-

rameters for a pair of the oscillators be identical, which is very

unlikely in 12-dimensional chaos. However, the presence of

attractive manifolds can stimulate the appearance of very tran-
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sient segments in time series which resemble 8-dimensional

cycles. They are actually observed in the hyperchaotic tra-

jectories for some pairs of variables. Nevertheless, they are

too short to contribute into the hyperchaotic skeleton. The

fixed point for 8-dimensional period-1 cycle AS2in-1out in

Poincaré section (Fig. 7, blue) also touches the chaotic map.

Segments of this cycle are observed in chaotic trajectories

but the cycle has only one-dimensional unstable manifold that

makes it nonmeaningful for hyperchaos formation.

We conclude that one of the reasons why hyperchaos arises

is the merge of unstable cycle RW with chaos. At the mo-

ment, there is no evidence that two unstable 8-dimensional

cycles participate in hyperchaos formation. A further study

on the evolution of these asymmetric regimes over the (Q -α)-

parameter plane will shed light on their stability and interac-

tions with hyperchaos.

V. DISCUSSION

Most studies on the routes to hyperchaos in coupled oscilla-

tors explored models with chaotic dynamics, choosing diffu-

sion in different versions for oscillator interaction. In contrast,

in the ring Repressilator the limit cycle born at the Andronov-

Hopf bifurcation does not undergo further bifurcations when

control parameter α is growth. The main source of com-

plex dynamics in Repressilator populations is the coupling

scheme based on the bacterial quorum sensing mechanism.

It means that all variables of Repressilators are strongly lo-

calized and their interactions are realized via diffusive mixing

of special signal molecules in the mutual environment. The

ring is composed of three genes, their promoters can indepen-

dently control the production of signal molecules as well as

the type of their activity creating different schemes of cou-

pling. We used one design of QS-coupling which already

demonstrated the generation of rich multistability in two cou-

pled Repressilators35–38. Two Repressilators were shown to

generate chaos via torus destruction, as well as via a period-

doubling cascade of resonant cycles. Moreover, there are pa-

rameter intervals where these two chaotic regimes collide but

we have never observed hyperchaos to appear.

Here we demonstrated numerically the presence of hyper-

chaos over wide parameter ranges (Fig. 1b) except for the

small values of α . We already discussed in39 the complex

evolution of tori in three mean-field QS-coupled Repressila-

tors for small α . In system (1) variables Ci are activated by

variables Si, the concentrations of which depend both on the

values of Bi and on the processes of Si mixing and dilution

in the mean field. It means that, due to mixing, the Ci stimu-

lation by Si is significantly affected by three combinations of

variables Bi, resulting in complex periodic activation of Re-

pressilators, which is also coupling strength-dependent. For

small Q the stable RW cycle dominates up to the Neimark-

Sacker bifurcation (Fig. 2) leading to torus formation. In par-

ticular, for α = 2777 we found successive formation of two

tori (Fig. 6c, 6d) and the destruction of the last complex torus

resulting in chaos formation (Fig. 6e). In turn, limit cycle

RW(11,0) loses stability becoming saddle-focus cycle with

two-dimensional unstable manifold, RW(9,2). Further merg-

ing of RW(9,2) with chaos results in continuous development

of hyperchaos as coupling growth.

There are other studies with simple oscillators focused on

the routes to hyperchaos. For example, Perlikovsy et al.22

investigated a ring of unidirectionally diffusion coupled au-

tonomous Duffing oscillators where each individual oscillator

in the absence of coupling has only trivial equilibrium dynam-

ics. With this coupling scheme, the birth of a limit cycle is ob-

served, which gives rise to torus formation at Neimark-Sacker

bifurcation. The torus undergoes complex evolution via torus

doubling up to hyperchaos. Despite very different differential

equations in this and our model (1), some events on the way

to hyperchaos are similar.

Scenario for the route to hyperchaos principally different

from that realized for coupled chaotic oscillators was found

in the model of two anti-phase periodically excited Toda

oscillators16. A single autonomous Toda oscillator is a dissi-

pative model which, like Duffing’s oscillator, manifests only

stable steady state. A non-autonomous model can demon-

strate oscillations and transition to chaos via period-doubling

bifurcations. With increasing coupling strength hyperchaos is

formed via a sequence of Neimark-Sacker bifurcations of res-

onant cycles and the absorption of saddle-focus cycles by the

chaotic attractor.

The use of various forms of simple direct or conjugate

diffusion to couple popular paradigmatic two-dimensional

oscillators brought a lot of important results over several

last decades. However, the spectrum of nonlinear systems

is growing, many interesting systems are principally multi-

dimensional and interactions between them cannot be reduced

to simple diffusion. Our work demonstrates only one ex-

ample of complex dynamics in three three-dimensional QS-

coupled synthetic genetic oscillators. Certainly, the implica-

tion of other schemes of quorum sensing coupling in networks

with other oscillators would discover new routes to diverse

complex dynamics or, on the contrary, point out how to reach

simple behavior.
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