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Transition to chaos via the destruction of a two-dimensional torus is studied numerically using the example of the Hénon

map and the Toda oscillator under the quasiperiodic forcing, and also experimentally using the example of a quasi-

periodically excited RL-diode circuit. A feature of chaotic dynamics in these systems is the fact that the chaotic attractor

in them has additional zero Lyapunov exponent, which strictly follows from the structure of mathematical models. In

the process of research, the influence of feedback is studied, in which the frequency of one of the harmonics of the

external forcing becomes dependent on a dynamic variable. Charts of dynamic regimes were constructed, examples of

typical oscillation modes were given, and the spectrum of Lyapunov exponents was analyzed. Numerical simulations

confirm that chaos resulting from the cascade of torus doubling has close to zero Lyapunov exponent, beside the trivial

zero exponent.

Transition to chaos via the destruction of quasiperiodic

oscillations is one of the main scenarios for the birth of

a chaotic attractor. The most well studied is the tran-

sition to chaos via the breakdown of a two-dimensional

torus1–10. A huge contribution to the study of this sce-

nario was made by Professor V.S. Anischenko. The par-

ticular way this scenario can evolve is a cascade of torus-

doubling bifurcations11–13. Quasiperiodically driven oscil-

lators are commonly considered as basic models demon-

strating torus-doublings. One of the open problems is

the type of the attractor, arising as a result of such cas-

cades. The particular case is the situation when the exter-

nal quasiperiodic type of driving is broken via feedback in-

troduced. The studying of the peculiarities of the chaotic

attractor arising as a result of torus-doubling scenario is

the aim of our work.

I. INTRODUCTION

Torus doubling scenario attracts great attention of re-

searchers in particular due to its prevalence and the place

it takes in the destruction of high-dimensional tori. One

of the first to study the role the torus doublings may play

in the scenario of destruction of a three-frequency torus

was V.S. Anischenko10,14,15. And it is largely thanks to
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him that many researchers turn to the study of the evolu-

tion of two-dimensional and multidimensional quasiperiodic

oscillations16–21. The variety of problems associated with

the study of the transition to chaos via the destruction of

quasiperiodic oscillations is very wide. Among the whole

set, the work22 should be noted, in which the breakdown of

three-dimensional torus was studied and as a result of a long

sequence of tori doubling, the birth of a chaotic attractor with

two zero Lyapunov exponents was observed. This is a very

interesting fact from the point of view of the theory of dy-

namical systems. The authors of22 show the presence of a

chaotic attractor with two zero Lyapunov exponents based on

numerical calculations with high accuracy.

The aim of this work is a numerical and experimental study

of examples of dynamical systems in which as a result of the

destruction of a two-dimensional torus a chaotic attractor with

two zero Lyapunov exponents is born.

The studies of quasiperiodical dynamics of nonlinear dis-

sipative systems is very complicated largely due to the fact,

that it is sometimes in principle impossible to carry out rigor-

ous analytical proofs. Many results in this case are obtained

via numerical studies. Therefore, the choice of models for

research is an important point. We propose to start from dy-

namical systems, that have two-dimensional tori and demon-

strate their destruction and transition to chaos, and which a

priori have chaotic attractors with two zero Lyapunov expo-

nents. These include nonlinear systems under quasiperiodic

forcing.

It should be noted, that the interest in the study of quasiperi-

odically driven dynamical systems was largely associated with

the study of the scenarios of the birth of a strange non-chaotic

attractor (SNA), its properties and diagnostics23–26. Accord-

ing to25, SNA is characterized by non-regular fractal structure

but non-positive Lyapunov exponent. At the same time, much

less attention was paid to the chaotic attractor, which was born

from a strange non-chaotic attractor. Due to the specificity

of quasiperiodically driven systems, the chaotic attractor in

them possesses two zero Lyapunov exponents. In this paper,
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FEATURES OF A CHAOTIC ATTRACTOR IN A QUASIPERIODICALLY DRIVEN NONLINEAR OSCILLATOR 2

the main attention will be paid to it. The fact, that in sys-

tems with quasiperiodic forcing a chaotic attractor has two

zero Lyapunov exponents, should be considered as trivial, and

this oscillation mode may be regarded as a test one. Of great-

est interest in this study is the situation, when a feedback is

introduced to a source of external forcing. For example, the

phase of the second harmonic component of the external forc-

ing could depend on the dynamic variable. In this case, the

situation with one zero Lyapunov exponent may be regarded

as trivial. It is difficult to predict how the second zero Lya-

punov exponent will behave. In the present work, these stud-

ies are carried out with the examples of the Hénon map27, the

quasiperiodically driven Toda oscillator28, and experimentally

with an RL-diode circuit under quasi-periodic forcing26. First,

quasiperiodic dynamics is investigated in all the systems un-

der study, and then feedback is introduced and its influence on

the behavior of the systems under study is investigated.

II. DYNAMICS OF THE HÉNON MAP UNDER
QUASIPERIODIC FORCING.

Quasiperiodically forced Hénon map may be considered

as a representative model for quasiperiodically forced period-

doubling systems:

x′ = a− x2 +u+ ε sin(2πy),
u′ = bx,
y′ = y+ c, mod 1.

(1)

It consists of two coupled mappings, each of them being

a representative specie of the related class — the first is the

Hénon map which demonstrates transition to chaos via period

doubling cascade, the other is a circle map, in this case a sim-

ple rotation with an irrational rotation number.

It is easy to see that for ε equal to zero, we have a trivial

mapping composed of two uncoupled maps. Chaotic attractor

in this case is the direct product of the supercritical Feigen-

baum attractor and that of the circle map. Such attractor is

called the Hénon quasiperiodic attractor29,30. The zero Lya-

punov exponent is provided here by the second mapping.

Quasiperiodic Hénon attractor arises in the general case as a

result of a homoclinic bifurcation of a saddle torus (which cor-

responds to the saddle closed invariant curve in descrete-time

mapping), a particular case is the bifurcation of the merging

of the attractor bands in the supercritical region of the torus

doubling cascade29,30. If ε is not equal to zero, then the num-

ber of observed doublings of the torus is finite. However, a

zero exponent is still present.

Figure 1a shows a chart of Lyapunov exponents for the sys-

tem (1). One can see the region of nonchaotic regimes, repre-

sented here by quasiperiodic attractors and also by the SNA.

Regions of SNA are located along the border of the transi-

tion to chaos. Next to them is the domain of actually chaotic

regimes, where one of the Lyapunov exponents becomes pos-

itive. Figure 2a shows a one-parameter graph of the depen-

dence of the Lyapunov exponents on the a parameter for ε =

0.1.

FIG. 1. Lyapunov exponents chart of the system (1) for b=0.05, c =
(
√

5−1)/2. a) k=0; b) k=0.01

FIG. 2. One-parameter graph of the dependence of the Lyapunov

exponents on the a parameter for ε=0.1. a) k=0; b) k=0.01; c) k=0.1

Consider a modification of the mapping (1) with the feed-

back introduced:

x′ = a− x2 +u+ ε sin(2πy),
u′ = bx,
y′ = y+ c+ kx, mod 1.

(2)

According to25, introduction of the feedback typically de-

stroys the SNA, it probably exists only over a set of measure

zero in parameter space. At the same time, the introduction

of feedback does not lead to the destruction of the homoclinic
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FEATURES OF A CHAOTIC ATTRACTOR IN A QUASIPERIODICALLY DRIVEN NONLINEAR OSCILLATOR 3

structure of the attractor, since the intersection of manifolds

is a robust property. For sufficiently small values of the feed-

back parameter, as a result of the torus doubling cascade and

the subsequent reverse cascade of absorption of saddle tori by

the attractor, an attractor appears, the characteristic property

of which is the Lyapunov exponent close to zero29,30. Due to

the feedback involved, the attractor may contain not only un-

stable tori, but unstable cycles as well, hence the Lyapunov

exponent may be not zero exactly. Nonetheless we show that

even in the case of only one torus doubling in the cascade, the

value of the exponent after the absorption of the saddle torus

by attractor is very close to zero.

Figure 1b shows a chart of Lyapunov exponents for the sys-

tem (2) at k = 0.01, on which the region of existence of a

chaotic attractor with a close to zero Lyapunov exponent is

highlighted (here Lyapunov exponent was regarded as zero if

it was smaller in magnitude than 10−3). Figure 2b shows a

one-parameter graph of the dependence of the Lyapunov ex-

ponents on the a parameter for ε = 0.1, k = 0.01. On this graph

one can see an interval in the parameter on which a quasiperi-

odic Hénon attractor with a close to zero Lyapunov exponent

is realized (highlighted in grey).

Figure 3 shows phase portraits of the attractor for differ-

ent parameter a values along the path ε = 0.1. For each por-

trait a corresponding spectrum of Lyapunov exponents is pre-

sented. While the Figure 3b shows presumably an SNA por-

trait (SNAs are distinguished from other regimes via applica-

tion of the rational approximations criteria31), the Figure 3e

corresponds to chaotic attractor in the system (2) with feed-

back involved, the zero exponent becomes positive. Figures

3c and 3f show the portraits of quasiperiodic Hénon-like at-

tractors.

At large values of the feedback parameter, the quasiperiodic

Hénon attractor does not arise (see Figure 2c), zero Lyapunov

exponent is absent, the related interval is highlighted in grey.

Figures 3h and 3i show the portraits of chaotic attractors for

k=0.1. Judging by these portraits it can be assumed that the

doubled two-dimensional torus fractalizes in accordance with

the standard Afraimovich-Shilnikov scenario9.

III. DYNAMICS OF THE QUASIPERIODICALLY DRIVEN
TODA OSCILLATOR.

In this section we study Toda oscillator (with exponential

restoring force 1− ex) under quasiperiodic forcing:

ẋ = u,

u̇ = 1− ex −2αu+A1 sinω1t +A2 sinω2t,
(3)

where ω1 and ω2 are two incommensurate frequencies, A1 and

A2 are two forcing amplitudes, α is dumping factor. Toda

oscillator under quasiperiodic forcing manifests very similar

behaviour to the forced Hénon map28, in particular, they both

have strange nonchaotic attractors. One can formally rewrite

the equations (3) as four-dimensional autonomous system by

FIG. 3. Phase portraits of the attractors for different parameter a

values along the path ε = 0.1. a) a=1, k=0.0, (0.0, -0.22, -2.77);

b) a=1.2657, k=0.0, (0.0, -0.0139±0.0001, -2.98); c) a=1.4, k=0.0,

(0.24, 0.0, -3.23); d) a=1, k=0.01, (-0.0000001±0.000001, -0.198, -

2.79); e) a=1.29, k=0.01, (0.0278, -0.0119±0.0001, -3.01); f) a=1.4,

k=0.01, (0.229, 0.000053±0.000005, -3.22); g) a=1.0, k=0.1, (0, -

0.220, -2.775); h) a=1.12, k=0.1, (0.0157, -0.053, -2.96); i) a=1.16,

k=0.1, (0.030, -0.033, -2.99)

introducing two independent phases:

ẋ = u,

u̇ = 1− ex −2αu+A1 sinθ +A2 sinϕ,

θ̇ = ω1,

ϕ̇ = ω2.

(4)

Perturbations of phases θ + δθ and ϕ + δϕ do not grow or

decay with time: δ θ̇ = 0, δ ϕ̇ = 0. Therefore system (4) has

two trivial zero LEs. The sum of two non-trivial LEs is always

equal to −2α — the divergence of the vector field, provided

by the right hand sides of (4). The possible regimes of (4) are

quasiperiodic two-dimensional tori (with two negative non-

trivial LEs), strange nonchaotic attractors, and chaotic attrac-

tors (with one positive non-trivial LE and one negative).

Fig. 4 shows the chart of LEs for system (4) on the plane of

parameters A1 and A2. Frequencies have been fixed at golden

ratio: ω1 = 1, ω2 = (
√

5+ 1)/2. LEs have been calculated

with the usual and well-known procedure32,33, while the equa-

tions have been solved with Runge – Kutta 4th order method.

Only the non-trivial exponents have been evaluated. Yellow

color refers to parameter values at which both non-trivial ex-

ponents are negative. With two trivial LEs the corresponding

attractors are two-dimensional tori or strange non-chaotic at-

tractors close to the boundary of chaos onset. The blue color
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FEATURES OF A CHAOTIC ATTRACTOR IN A QUASIPERIODICALLY DRIVEN NONLINEAR OSCILLATOR 4

marks situations, where the first non-trivial LE is close to zero.

Exact zeroes of the first non-trivial LE correspond to bifurca-

tion lines. One can see such lines for torus doubling bifurca-

tions. Cyan dots are chaotic regimes with one positive and one

negative exponent. With two trivial zero LEs the chaotic at-

tractors are based on destroyed tori. Extra panels show exam-

ples of attractors of Poincaré stroboscopic map (with section

ϕ = 2π) at four parameters value sets. Figures 4 (a) and (c)

demonstrate fractal tori, possibly SNA. Remarkably, the (c)

panel shows the attractor from the stability window. Figures 4

(b) and (d) are chaotic attractors. Well-developed attractor (d)

consists of one “piece”. Attractors (a), (b) and (c) are of two

“parts”, since they are based on doubled torus.

We have calculated one-parameter dependencies of the non-

trivial LEs vs. force amplitude A1 at fixed value A2 = 0.5.

Figure 5 shows these dependencies (a) and the enlarged part

for the largest LE (b) at the onset and development of chaos.

The examples of attractors on Figure 4 correspond to Fig-

ure 5 also. One can see that the plot of the largest expo-

nent is zero at A1 ≈ 1.42. This is the torus doubling bifur-

cation, we clearly observe exactly one such bifurcation be-

fore the torus breakdown and chaos onset (at parameters fixed

as in caption to Fig. 5). The torus fractalization occurs in

the interval A1 ∈ [1.806;1.812] approximately, see Fig 4 (a)

as an example of fractalized torus with non-trivial LEs λ1 =
−0.002137±5 ·10−6, λ2 =−0.197863±5 ·10−6. There is a

short comeback of stability at the interval A1 ∈ [1.974;2.014]
approximately. The example of the produced attractor is in

Figure 4 (c), looking very unregular, while the correspond-

ing non-trivial LEs are negative: λ1 = −0.004618± 5 · 10−6,

λ2 =−0.195382±5 ·10−6.

All of the chaotic attractors of the quasiperiodically forced

Toda oscillator (4) have two trivial zero LEs. We regard

the Toda system (4) as the base which we supplement with

feedback on external forcing (introduced into the equation for

phase ϕ):

ẋ = u,

u̇ = 1− ex −2αu+A1 sinθ +A2 sinϕ,

θ̇ = ω1,

ϕ̇ = ω2 + kx,

(5)

here k is small parameter. System (4) is its particular case

with k = 0. System (5) has only one trivial zero LE. The oc-

curence of a chaotic attractor with an extra non-trivial zero LE

is a curious phenomena.

For system (5) the sum of LEs is equal to −2α . We have

calculated numerically the non-trivial exponents by the stan-

dard procedure. Figure 6 shows the chart of LEs for system (5)

with k = 0.001. Compare it with Fig. 4. Yellow regions cor-

respond to two-dimensional tori, black lines mark torus dou-

bling bifurcations. Here SNA are absent due to the feedback

on frequency ϕ̇ . Dark-cyan regions correspond to usual chaos

(one non-trivial LE is positive, two other are negative). Cyan

regions correspond to chaos with extra zero LE (one positive,

one is close to zero, one is negative).

FIG. 4. Chart of Lyapunov exponents for system (4), varying amplitudes A1 and A2, while α = 0.1, ω1 = 1 and ω2 = (
√

5+ 1)/2 are fixed.

Yellow dots mark quasiperiodic regimes and SNA, cyan dots mark chaotic regimes. Blue dots mark situations close to bifurcation. Red crosses

tagged by letters mark parameter values for phase portraits on panels (a) – (d). (a): A1 = 1.807; (b): A1 = 1.915; (c): A1 = 1.995; (d): A1 = 3.
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FEATURES OF A CHAOTIC ATTRACTOR IN A QUASIPERIODICALLY DRIVEN NONLINEAR OSCILLATOR 5

0 1 2 3 4 5

A1

−0.3

−0.2

−0.1

0.0

0.1

λ

1.755 1.835 1.915 1.995 2.075 2.155

A1

−0.02

0.00

0.02

λ

FIG. 5. Lyapunov exponents vs. amplitude of forcing A1 for system (4) at fixed values A2 = 0.5, α = 0.1, ω1 = 1, ω2 = (
√

5+1)/2. Green

line shows trivial zero exponents. Enlarged plot shows the onset of chaos (the largest exponent is plotted).

FIG. 6. Chart of Lyapunov exponents for system (5), varying amplitudes A1 and A2, while k = 0.001, α = 0.1, ω1 = 1 and ω2 = (
√

5+1)/2

are fixed. Yellow dots mark quasiperiodic regimes, dark-cyan dots mark chaotic regimes, cyan dots correspond to chaotic regimes with an

extra zero LE. Blue dots mark situations close to bifurcation. Red crosses tagged by letters mark parameter values for phase portraits on panels

(a) – (h). (a): A1 = 1.65; (b): A1 = 1.8; (c): A1 = 1.915; (d): A1 = 1.995; (e): A1 = 2.075; (f): A1 = 3; (g): A1 = 3.9; (h): A1 = 4.8.

Inserted panels on Fig. 6 show examples of attractors in

stroboscopic Poincaré section ϕ = 2π at different values of

parameter A1, with other parameters fixed. All of the exam-

ples of attractors belong to the line A2 = 0.5, thus we sup-

plement the chart of LEs with one-parameter dependencies of

LEs on A1, see Fig. 7, with k = 0.001. There is also Table I

with LEs for attractors on inserted Panels of Fig. 6. One can

see a part of the plot with one non-trivial LE equal to zero and

the other negative, corresponding to quasiperiodic regimes.

At A1 ≈ 1.42 the second non-trivial exponent comes close to

zero, marking the torus doubling bifurcation. The transition

to chaos goes without the appearance of SNA, but through the
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FEATURES OF A CHAOTIC ATTRACTOR IN A QUASIPERIODICALLY DRIVEN NONLINEAR OSCILLATOR 6

emergence of cycles of very high periods. Chaotic attractors

at very wide parameter ranges have zero or very close to zero

non-trivial LE.

The panel (a) of Fig. 6 shows the doubled torus at A1 =
1.65. Fig. 6 (b) shows an unsmooth torus at A1 = 1.8. The

panel (c) demonstrates a chaotic attractor with extra zero non-

trivial LE at A1 = 1.915. The panel (d) shows an attractor

from the stability window at A1 = 1.995. The attractor looks

like fractalized torus, while it is really a long-periodic cycle

with all non-trivial LEs negative. The panel (e) demonstrates

a chaotic attractor without non-trivial zero LE at A1 = 2.075.

The panel (f) contains a portrait of chaotic attractor at A1 = 3

with one of the LEs very close to zero. From the physical

point of view the second LE is zero. The panel (g) shows a

chaotic attractor at A1 = 3.9 without non-trivial LE close to

zero. The panel (h) demonstrates a torus from the stability

window at A1 = 4.8.

Parameter values LEs Panel on Fig. 6

A1 = 1.65 λ1 =−8 ·10−8 ±1.5 ·10−7,

λ2 =−0.0553±0.0001,

λ3 =−0.1447±0.0001

(a) A1 = 2.075 λ1 = 0.0112±0.0002,

λ2 =−0.0003±4 ·10−5,

λ3 =−0.2109±0.0002

(e)

A1 = 1.8 λ1 =−6 ·10−7 ±1.4 ·10−6,

λ2 =−0.00620±2 ·10−5,

λ3 =−0.19379±2 ·10−5

(b) A1 = 3 λ1 = 0.0326±0.0002,

λ2 =−6 ·10−5 ±3 ·10−5,

λ3 =−0.2325±0.0002

(f)

A1 = 1.915 λ1 = 0.0143±0.0001,

λ2 =−6 ·10−6 ±10−5,

λ3 =−0.2143±0.0001

(c) A1 = 3.9 λ1 = 0.0425±0.0004,

λ2 =−0.0066±0.0001,

λ3 =−0.2359±0.0005

(g)

A1 = 1.995 λ1 =−0.0006±0.0003,

λ2 =−0.006±0.001,

λ3 =−0.194±0.001

(d) A1 = 4.8 λ1 = 3 ·10−6 ±1.5 ·10−5,

λ2 =−0.0359±0.0001,

λ3 =−0.1641±0.0001

(h)

TABLE I. Non-trivial LEs for attractors on Panels (a) – (h) on Fig. 6.

0 1 2 3 4 5

A1

−0.3

−0.2

−0.1

0.0

0.1

λ

1.80 1.92 2.04 2.16 2.28 2.40

A1

−0.02

−0.01

0.00

0.01

0.02

0.03

λ

FIG. 7. Lyapunov exponents vs. amplitude of forcing A1 for system (5) at fixed values k = 0.001, A2 = 0.5, α = 0.1, ω1 = 1, ω2 = (
√

5+1)/2.

Enlarged plot shows the onset of chaos (the largest exponent is plotted).

IV. RL–DIODE CIRCUIT UNDER QUASIPERIODIC
FORCING.

The object of research in a physical experiment is a RL–

diode circuit (Fig. 8), excited by a signal representing the sum

of two harmonic components A1Sin2πf 1t and A2Sin2πf 2t.

The linear resonant frequency of the circuit was 50 kHz. The

nature of the oscillations was analyzed using various projec-

tions of the phase portrait, stroboscopic maps and power spec-

tra of oscillations. The values of the external forcing fre-

quencies are set as follows: f1 was chosen close to the linear

resonance frequency of the oscillatory circuit and was equal

to 55 kHz, f2=kf 1, where: k = (
√

5 − 1)/2, in the experi-

ment the frequency f2 =33.991869381 kHz. The experimen-

tal data: the diode voltage U , the diode current I, the charge on

the diode Q, and the external force A2Sin2πf 2t were entered

into a personal computer using the NI USB–6251 analog in-

put/output device (Fig. 8).
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FIG. 8. Scheme of the system under study, RL-diode circuit with two harmonic influences.

FIG. 9. Experimental chart of dynamic regimes on the plane of the

external driving amplitude parameters (A1, A2).

Fig. 9 shows an experimental chart of dynamic regimes

in the parameter plane (A1,A2). Light areas correspond to

regular oscillations, areas of chaos existence are marked in

gray tone, the transition to chaos was recorded based on the

analysis of the power spectra of the oscillations. Solid lines

indicate the lines of torus doubling bifurcations, these lines

end at the point period doubling terminal, TDT, indicated by

crosses, the area marked T corresponds to a two-dimensional

torus, 2T - to a doubled (period-two) two-dimensional torus,

in the regions marked 4T and 8T, there are period-four and

period-eight two-dimensional tori, respectively. The transi-

tion to chaos in this system occurs via the birth of a strange

non-chaotic attractor; however, the regions of its existence are

not shown, but they were studied in detail in26.

Fig. 10 shows the phase portraits of attractors of the stro-

boscopic maps corresponding to f1 external force frequency

as well as the oscillation power spectra illustrating the transi-

tion to chaos via the destruction of a two-dimensional torus.

Projections onto the plane (sin(2πf 2),Q) are shown, where

sin(2πf 2) reflects the phase of the corresponding harmonic

component of the driving force, Q is the charge on the diode.

The use of the projection onto the plane (sin(2πf 2),Q) is ex-

plained by the fact that the phase portrait reflects the depen-

dence of the behavior of the dynamic variable on the phase of

the external action. Fig. 10a corresponds to a smooth torus,

in these modes a smooth closed curve is observed in the stro-

boscopic section, and the oscillation demonstrates a discrete

form of the power spectrum. With an increase in parame-

ter A1, distortion of the attractor is observed in the Poincare

section, and the oscillation power spectrum is enriched with

combination harmonics (Fig. 10b). While approaching the

boundary of existence of regular oscillation modes, a strange

non-chaotic attractor is born in the system under study. The

transition to a strange non-chaotic attractor was registered us-

ing the method of rational approximations, in which the irra-

tional ratio of exposure frequencies is replaced by a rational

one from the sequence of Fibonacci numbers (in the case of

gold rotation number). For this, in the experiment, the ratio of

frequencies was set from the sequence of Fibonacci numbers

f1/ f2=34/55, and then the phase shift between the harmon-

ics of the effect was changed. At A1=1.545V period doubling

bifurcation of the limit cycle was observed, which in the ir-

rational limit corresponds to a strange non-chaotic attractor,

the phase portrait and spectrum of which is shown in Fig. 10c.

Fig. 10d illustrates the developed chaos in the system with an

increase in the amplitudes of the harmonic components of the

external forcing.

The transition to chaos via the destruction of a doubled two-

dimensional torus seems to be interesting. A feature of sys-

tems under quasiperiodic action is that usually a finite number

of doublings are observed, and then the invariant curve loses

its smoothness and a transition to chaos occurs via the loss of

smoothness of the invariant curve. Fig. 11 illustrates the tran-

sition to chaos from a doubled torus. For a doubled torus, a

doubled invariant curve is observed in the stroboscopic section

(Fig. 11a). With an increase in parameter A1, a deformation of

the invariant curve and appearance of a kinks is observed, in-

dicating the presence of local instability. At a certain value of

A1, the kinks are merging, which is possibly due to the con-
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FIG. 10. Attractors in the stroboscopic section and the power spec-

tra of oscillations illustrating the transition to chaos from a two-

dimensional torus via the birth of an SNA: a) A1=0.5 V , A2=0.8 V ,

b) A1=1.0 V , A2=0.8 V , c) A1=1.545 V , A2=0.8 V , d) A1=3.05 V ,

A2=0.8 V .

tact of the doubled torus with the unstable torus (Fig. 11b),

and as a result, with a further increase in A1 a chaotic attractor

is formed (Fig. 11c,d).

Now we introduce feedback. This is realized by switching

the key k on (see Fig. 8), as a result of which the variable Q is

fed to the input of the phase modulation of the generator and

changes the phase of the harmonic component f2.

Fig. 12 illustrates the dynamics of the experimental system

in the presence of feedback. The values of the parameters are

chosen in such a way that they repeat the analogous ones for

Fig. 10. Fig. 12a corresponds to a smooth torus, but unlike

Fig. 10a, the attractor in the stroboscopic section is some-

what blurred due to the influence of feedback. An increase

in parameter A1 leads to deformation of the attractor in the

stroboscopic section, and at the boundary of the order-chaos

transition the attractor takes the form shown in Fig. 12b. In

FIG. 11. Attractors in the stroboscopic section and the power spec-

tra of oscillations illustrating the transition to chaos from a doubled

two-dimensional torus: a) A1=0.6 V , A2=2.25 V , b) A1=0.7985 V ,

A2=2.25 V , c) A1=0.802 V, A2=2.25 V , d) A1=1V , A2=2.25 V .

this case, it is impossible to speak about the birth of a strange

non-chaotic attractor, since the frequency f2 depends on a dy-

namic variable. A further increase in parameter A1 leads to

the transition and development of chaos in the system, which

is illustrated in Fig. 12c.

Fig. 13 illustrates the transition to chaos via the destruc-

tion of a doubled two-dimensional torus in the presence of

feedback, the parameter values correspond to those in Fig. 11.

Fig. 13a illustrates a doubled torus, the attractor in the stro-

boscopic section, as in the previous case, is somewhat blurry,

due to the control of the phase of the action of the harmonic

component f2. With an increase in the parameter A1, a defor-

mation of the invariant curve is observed (Fig. 13b). A further

increase in the parameter A1 leads to the merging of the bands

of the doubled torus and to absorbing of the unstable torus

by the attractor, and as a result, with a further increase in A1,

chaotic quasiperiodic Hénon attractor is formed (Fig. 13c).
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FIG. 12. Attractors in the stroboscopic section and the power spec-

tra of oscillations illustrating the transition to chaos from a two-

dimensional torus in the system with feedback: a) A1=0.5 V , A2=0.8

V , b) A1=1.65 V , A2=0.8 V , c) A1=2.0 V , A2=0.8 V .

Thus, the introduction of feedback in a system with

quasiperiodic forcing, with the help of which the phase of ac-

tion of one of the harmonics is controlled, does not qualita-

tively change the dynamics of the system. It can be assumed

that the chaotic attractor, as in the case without feedback, has

two zero Lyapunov exponents.

V. CONCLUSION

As a result, a study was carried out of dynamical systems

with quasiperiodic driving in which there is a two-dimensional

torus, undergoing destruction and transition to chaos, and in

which there is a chaotic attractor with two zero Lyapunov ex-

ponents. The introduction of feedback changes the dynamics

of the system; however, in the case of a weak perturbation

of the system, that is, for small values of the feedback pa-

rameter, the properties of the chaotic attractor do not qual-

itatively change; it also has two zero Lyapunov exponents.

An increase in the feedback parameter leads to a situation

where a chaotic attractor with one zero Lyapunov exponent is

born, when crossing the boundary between order and chaos,

but with an increase in the amplitude of the action, another

Lyapunov exponent turns to zero. With a strong feedback,

the birth of a chaotic attractor with one Lyapunov exponent

FIG. 13. Attractors in the stroboscopic section and the power spectra

of oscillations illustrating the transition to chaos from a doubled two-

dimensional torus in the system with feedback: a) A1=0.6 V , A2=2.25

V , b) A1=0.795 V , A2=2.25 V , c) A1=1 V, A2=2.25 V .

is observed. Altogether, the situation can be characterized as

robust, that is, weak perturbations of the system do not qual-

itatively change the properties of the chaotic attractor. Com-

parison of the results of numerical and experimental studies

suggests that the attractors shown in Fig. 12c,d in the strobo-

scopic section also have two zero Lyapunov exponents.
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