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Abstract – We study numerically the dynamics of Chaplygin sleigh under action of the quadratic
potential field. In contrast with free Chaplygin sleigh our mechanical model manifests complex
behaviour: conservative-like chaotic regimes at low energies, coexistent pairs of chaotic attractors
and repellers, mapping to each other by time-reversal symmetry, and the recently discovered
phenomenon of attractor and repeller intersection, at high energies. We demonstrate that the
development of attractors and repellers corresponds to period doubling scenario, followed by their
collision and instant increase in size.

Introduction. – Systems with time-reversal symme-
try gain attention in nonlinear sciences [1–3] and are es-
pecially abundant in mechanics [4–7]. Reversibility is a
feature of dynamical system to manifest the same be-
haviour in forward and backward time evolution. Math-
ematically speaking, there is a transformation of phase
space R̂, called involution, that, when combined with the
time-reversal transformation t 7→ −t, leaves the system
unchanged. In non-conservative reversible systems the in-
volution maps attractors into repellers and vice versa. An
important property of involution is that if it is applied
twice, then all of the trajectories are mapped into itself
without time reversal: R̂ ◦ R̂ = Id.

While it is natural to expect Hamiltonian systems to
have this property, there are many examples of non-
Hamiltonian systems with time-reversal symmetry [8–12].
Among them there are systems with nonholonomic con-
straints [4–7]. Nonholonomic constraints can not be ex-
pressed in terms of coordinates in finite form [13, 14].
Similar to systems with dissipation of energy, the non-
holonomic systems lack an invariant measure [15], but of-
ten have the energy integral. The well-known example
of nonholonomic system is rattleback [4, 16–20] – a semi-
ellipsoidal top with one preferred direction of rotation cor-
responding to attractor, and other direction unstable, cor-
responding to repeller.

Remarkably, a nonempty intersection of closures of at-
tractor and repeller is possible for some systems with time-

reversal symmetry, bringing a new type of dynamics called
mixed [21–26], which is distinguished from conservative
and pure dissipative. The trajectories of attractors and
repellers become intertwined in such a complex manner,
that they can not be separated from each other. A par-
ticular scenario of mixed dynamics emergence was pro-
posed recently for two-dimensional reversible diffeomor-
phisms [25, 26]: invariant manifolds of the saddle points
belonging to chaotic attractor and to repeller intersect
each other, accompanied by collision of the attractor with
the repeller. At once the attractor and the repeller in-
stantly increase in size. Such behaviour has been found
in the nonholonomic model of the Suslov top and in the
dynamics of vortices [25,26].

The Chaplygin sleigh is the paradigmatic example of
nonholonomic system [13, 14]. It is a platform on a plane
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Fig. 1: The Chaplygin sleigh.

p-1



Sergey P. Kuznetsov and Vyacheslav P. Kruglov and Alexey V. Borisov

surface (fig. 1), supported by two sliding points and a
“knife edge”, capable of sliding only in the longitudinal
direction. One can put a wheel instead of the “knife”,
with the same constraint. This restriction of translational
movement in direction transversal to the “knife edge” is
a nonholonomic constraint, which can be physically inter-
preted as infinite strength of friction [27]. The A marks
the contact point of the “knife edge” with the plane and
C is the center of mass of the platform, the distance be-
tween them is a. The coordinates of A in laboratory frame
are X and Y , the coordinates of C are x = X + a cosϕ,
y = Y + a sinϕ. The longitudinal component of velocity
at the point of contact A is u = Ẋ cosϕ + Ẏ sinϕ and
directed along the “knife”, the transversal velocity compo-
nent at the contact point v = −Ẋ sinϕ + Ẏ cosϕ is zero
by constraint. The sleigh is able to rotate around the
contact point with angular velocity ω, rotation angle ϕ is
measured between the X axis and the knife.

The dynamics of free Chaplygin sleigh is relatively sim-
ple; it is described by an integrable system of equations.
Generally, after initial simultaneous translational and ro-
tational movements the sleigh glides in arbitrary direction
with constant speed and without rotation. Different mod-
ifications of Chaplygin sleigh have been investigated pre-
viously: under periodic kicks [28], with additional moving
parts, with periodically switched location of nonholonomic
constraint [29–33] (with new phenomena of unbounded ac-
celeration [34, 35]), subject to friction [36], and under ac-
tion of potential forces [37, 38]. Notably, a potential field
makes the behaviour much more complicated.

We study the dynamics of Chaplygin sleigh under
quadratic potential field, introduced in [38]. The po-
tential force, acting on sleigh, can be applied using the
spring under the Hooke’s law, that connects the sleigh
with the origin point on the plane. In this setup the
coordinates play substantial role, but the rotation angle
is irrelevant (in rotating reference frame). Conceptually
the model of the Chaplygin sleigh moving in potential
well resembles the nonlinear oscillator, we even might call
our system a nonholonomic oscillator. The motions of
the sleigh on the plane are simultaneously oscillatory and
rotational, it requires to track four dynamical variables.
Therefore, the most suitable way to recognize different
dynamical patterns is to visualize typical trajectories in
the Poincaré cross-section of the phase space. The phase
trajectories are confined by initial conditions to the sur-
faces of constant mechanical energy, so that we investi-
gate the behaviour of the sleigh at different energy val-
ues. Outside the special cases the motions are complex,
at different ranges of the energy the dynamics are close
to conservative-like or to the typical dissipative-like with
period-doubling scenario of chaos onset (with attractors
and repellers undergoing simultaneous changes). At very
high energies the attractor and repeller visually intersect
and parts of them occupy the same space, meaning their
trajectories run very close to each other and become prac-
tically inseparable [25, 26]. From the practical point of

view, this report paves a way to deriving the mathemati-
cal model of moving object, capable of complex behaviour
without complicated internal machinery, but controllable
by external force.

Equations. – One can obtain the model equations
with Lagrange–D’Alambert principle. The kinetic energy
of the sleigh is:

T =
1

2

(

mu2 + (v + aω)
2

)

+
1

2
Iω2 =

1

2
m

(

Ẋ2 + Ẏ 2 + b2ϕ̇2

)

+maϕ̇
(

Ẏ cosϕ− Ẋ sinϕ
)

,

(1)
The last term acknowledges the fact that the center of
mass is distanced from the contact point. The components
of velocity at contact point in laboratory frame are Ẋ =
u cosϕ and Ẏ = u sinϕ, the angular velocity is ϕ̇ = ω.
Parameter b describes the inertia of the sleigh relative to
the contact point: b2 = I

m
+ a2.

The constraint is

Γ = v = −Ẋ sinϕ+ Ẏ cosϕ = 0. (2)

The potential energy of the sleigh:

U (x, y) = U (X + a cosϕ, Y + a sinϕ) . (3)

The equations of motion are given by

∂T

∂q
−

d

dt

∂T

∂q̇
−

∂U

∂q
= λ

∂Γ

∂q̇
, (4)

where q = x, y or ϕ, and λ is Lagrange multiplier. After
derivations the equations for velocity of the contact point
u, angular velocity ω, rotation angle ϕ and coordinates of
the center of mass x and y are

mu̇ = maω2
−

∂U

∂x
cosϕ−

∂U

∂y
sinϕ,

mb2ω̇ = −mauω + a
∂U

∂x
sinϕ− a

∂U

∂y
cosϕ,

ẋ = u cosϕ− aω sinϕ,

ẏ = u sinϕ+ aω cosϕ,

ϕ̇ = ω.

(5)

Let us specify the potential energy by the function U =
k
2

(

x2 + y2
)

, where k parameter can be interpreted as the
stiffness of the spring. With dimensionless variables and
parameters

t̃ =

√

k

m
t, ũ =

1

a

√

k

m
u, ω̃ =

√

k

m
ω,

x̃ =
x

a
, ỹ =

y

a
, µ =

b2

a2
=

I

ma2
+ 1,

(6)

and omitting the tildes, the equations of motion become

u̇ = ω2
− x cosϕ− y sinϕ,

µω̇ = −uω + x sinϕ− y cosϕ,

ẋ = u cosϕ− ω sinϕ,

ẏ = u sinϕ+ ω cosϕ,

ϕ̇ = ω.

(7)
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After useful change of reference frame

ξ = x cosϕ+ y sinϕ, η = −x sinϕ+ y cosϕ, (8)

the equation for angle ϕ separates, leaving only four equa-
tions:

u̇ = ω2
− ξ,

µω̇ = −uω − η,

ξ̇ = u+ ηω,

η̇ = ω − ξω.

(9)

The dynamics of the angle ϕ is irrelevant due to the sym-
metry of the potential and will not be described.

The total mechanical energy of the sleigh is conserved:

W =
1

2

(

u2 + µω2 + ξ2 + η2
)

. (10)

It is important to note, that the divergence of the vector
field, associated with eqs. (9), is not zero. Thus, attrac-
tors and repellers are possible on the surfaces of constant
energy.

There are two involutions:

R̂1 :

{

u 7→ −u,

ω 7→ −ω,
and R̂2 :

{

u 7→ −u,

η 7→ −η.
(11)

Their combination is the symmetry:

R̂1 ◦ R̂2 = Ĝ :

{

η 7→ −η,

ω 7→ −ω,
(12)

which maps trajectories without the time reversal.
The system (9) has a trivial elliptic equilibrium

(u = 0, ω = 0, ξ = 0, η = 0), corresponding to the center
of mass at rest at the bottom of the potential well and the
“knife edge” at rest at arbitrary angle ϕ. If the sleigh does
not rotate (ω = 0, η = 0) while moving, then the center of
mass simply oscillates in the potential well like the usual
harmonic oscillator:

u̇ = −ξ,

ξ̇ = u.
(13)

Our numerical simulations show, that these pure oscilla-
tory motions are unstable with respect to perturbations of
ω and η.

If the energy W > 1

2
(1 + µ), then there are four saddle-

focus equilibria (ξ = 1, ω = ±1, u ± η = 0) on the level
of energy W . They correspond to revolutions of the sleigh
around the bottom of potential well with the center of
mass staying at the constant distance ξ = 1 counterclock-
wise (ω = 1, u = −η) or clockwise (ω = −1, u = η). The
saddle-foci map into each other by involutions R̂1 and R̂2

and by the symmetry Ĝ. At the energy W = 1

2
(1 + µ)

the equilibrium points merge in pairs (ξ = 1, ω = ±1,
u = 0, η = 0) and vanish. At these degenerate equilibria
the contact point of the “knife edge” is at the bottom of
potential well, while the center of mass rotates around it.

After these trivial considerations, we proceed to dis-
cuss the complex dynamics of the Chaplygin sleigh in the
quadratic potential. Due to the non-integrability of the
eqs. (9), we resort to numerical methods.

Fig. 2: Lyapunov exponents vs. energy W at µ = 10. Red plot
marks the sum of Lyapunov exponents.

Numerical simulations. – Eqs. (9) were solved nu-
merically using the Dormand – Prince method with an
adaptive step implemented in the Odeint library from the
Boost library collection [39]. The conservation of energy
was checked during the simulations.

First, we want to demonstrate what types of behavior
are observed in the system by calculating Lyapunov expo-
nents for typical trajectories. The Lyapunov exponents of
the trajectory are averaged rates of exponential expansion
or contraction of the phase space volume near the trajec-
tory [40]. They characterize the stability of the particular
trajectory and are useful tool to identify trajectories of
regular or chaotic motions. We used the well-known pro-
cedure [41,42] for calculation of Lyapunov exponents with
LAPACK subroutines for orthogonalization of perturba-
tion vectors.

Typical dependencies of Lyapunov exponents on energy
W are plotted in fig. 2 with energy step ∆W ≈ 0.00587.
The initial conditions at the adjacent energy steps were
picked close to each other to produce more or less con-
tinuous plots. We must clarify that for low energies the
particular values of Lyapunov exponents differ for every
trajectory. Two of the exponents are always zero (up to
the numerical accuracy), one is due to the energy integral
(the perturbation vectors tangent to the constant energy
surface do not grow up or down) and another one corre-
sponds to perturbations along the trajectory, and these
have constant average norm. The other two Lyapunov
exponents can be nonzero. The positive value of the ex-
ponent signifies instability of the trajectory. We plot the
sum of Lyapunov exponents with red colour. This sum is
the average divergence of the vector field given by right-
hand-sides of eqs. (9) along the particular trajectory.

At energies less than W ≈ 28.27 the sum of Lyapunov
exponents is almost equal to zero, therefore the dynam-
ics are close to conservative. One can see, that all val-
ues on our plot are zero in the interval of energies from
W ≈ 11.43 to 28.27, because our algorithm accidentally
chose initial conditions that belong to trajectories of reg-
ular motions, but our numerics show that chaotic trajec-
tories exist in this energy range as well. Our goal for
low energies was to show the complexity of possible mo-
tions, but our calculations are not representative of the all
phase space. We demonstrate below the phase portraits
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Fig. 3: (a, c, e) Projection of phase space of the Poincaré return
map onto the plane of variables ξ and η. Parameter values:
W = 0.5, 1 and 1.5, while µ = 10. (b, d, f) Portrait of 3D
phase space of the Poincaré map. Parameter values: W = 0.5,
1 and 1.5, while µ = 10.

of dynamical regimes very similar to conservative, where
regular and chaotic trajectories coexist.

At energies more than W ≈ 28.27 the sum of Lyapunov
exponents is slightly less then zero. This is the domain
where the attractors, repellers and very intricate transient
trajectories coexist. At energies more than W ≈ 80 the
behaviour shifts to clearly dissipative with few attractors
and repellers with extremely slow convergence rates. The
exact value of energy, where the change of behaviour hap-
pens, is unknown to us. For example at W = 80 at short
times of simulation the dynamics are very complicated,
but turns out to be transient, since only simple periodic at-
tractors are observed at sufficiently large times. We should
note that there are rare artifacts on the plot at energies
W > 80 in the form of sharp peaks, which we could not
get rid of in the calculations.

At high energies the largest Lyapunov exponent be-
comes positive with the birth of chaotic attractors. The

Fig. 4: (a) Projection of phase space of the Poincaré return
map onto the plane of variables ξ and η. Parameter values:
W = 40 and µ = 10. (b) Portrait of 3D phase space of the
Poincaré map. Parameter values: W = 40 and µ = 10. (c)
Phase portrait of forward-time evolution, W = 80 and µ = 10.
Transients are black, bold red dots mark the limit set after
very long simulation – the attractor. (d) Phase portrait of
backward-time evolution, W = 80 and µ = 10. Transients are
red, bold black dots mark the repeller.

value of another Lyapunov exponent is zero at some points
before the emergence of chaos, indicating bifurcations of
regular attractors. At high energies the Lyapunov ex-
ponents describe symmetric attractors and repellers with
very good accuracy. At W ≈ 163.68 attracting and re-
pelling domains of phase space overlap with emergence of
mixing dynamics. Examples of phase space at these en-
ergy values are demonstrated below.

We chose the Poincaré cross-section u = 0 (the trajec-
tories cross it in both directions) to portray the dynamics
clearly. Due to the energy integral eq. (10) the trajecto-
ries of Poincaré return map lie on the ellipsoidal surface
µω2 + ξ2 + η2 = 2W .

Fig. 3(a) shows the phase portrait of Poincare return
map at the energy value W = 0.5 projected onto the
plane of coordinate variables ξ and η. The phase space
is full of quasiperiodic trajectories. Fig. 3(b) shows a
three-dimensional phase portrait of the Poincaré map at
W = 0.5. One can see that the phase space is symmet-
ric to the involutions eqs. (11). Figs. 3(c,d) demonstrate
slightly more complicated dynamics at W = 1. Figs. 3(e,f)
show chaotic layers between quasiperiodic trajectories at
W = 1.5. We interpret the observed changes in the phase
space as the destruction of quasiperiodic trajectories and
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Fig. 5: (a) Attractor and repeller of the Poincaré return map
in projection onto the plane of variables η and ω. Parameter
values: W = 125 and µ = 10. (b) Attractor and repeller in 3D
phase space of the Poincaré map. Parameter values: W = 125

and µ = 10. Black circles are points of attractor, red circles are
points of repeller. (c) Attractors and repellers of the Poincaré
return map in projection onto the plane of variables η and ω.
Parameter values: W = 140 and µ = 10. (d) Attractors and
repellers in 3D phase space of the Poincaré map. Parameter
values: W = 140 and µ = 10. Black circles and crosses are
points of two symmetric attractors, red circles and crosses are
points of repellers.

formation of chaotic layers. In fact, the KAM-theorem has
been proved for general reversible systems without sym-
plectic structure [43–47].

Figs. 4(a,b) show almost complete disappearance of
quasiperiodic trajectories at large energies (W = 40).
Only few quasiperiodic trajectories remain with all Lya-
punov exponents equal to zero up to numerical accuracy.
But the most of trajectories investigated by us are chaotic
with the first Lyapunov exponent positive and the sum
of the exponents less than zero. We can not guarantee
the existence of chaotic attractors at W = 40, since the
chaotic trajectories might be very long transients, but we
affirm, that after sufficiently long simulations (108 itera-
tions of Poincaré return map) the chaotic dynamics en-
dures without changes. At W = 80 the dynamics at small
times seems to be fully chaotic without quasiperiodic tra-
jectories, but actually at long times (108 iterations) all
of the trajectories converge to periodic attractor. There
is also coexisting periodic repeller, which manifest itself
in backward-time simulations. Figs. 4(c,d) show chaotic
transients in forward and backward time and periodic at-
tractor and repeller.

Fig. 6: (a) Attractors and repellers of the Poincaré return map
in projection onto the plane of variables η and ω. Parameter
values: W = 150 and µ = 10. (b) Attractor and repeller
in 3D phase space of the Poincaré map. Parameter values:
W = 150 and µ = 10. Black circles and crosses are points of
two symmetric attractors, red circles and crosses are points of
repellers. (c) Chaotic attractors and repellers of the Poincaré
return map in projection onto the plane of variables η and
ω. Parameter values: W = 155 and µ = 10. (d) Chaotic
attractors and repellers in 3D phase space of the Poincaré map.
Parameter values: W = 155 and µ = 10. Attractors are plotted
black and purple, repellers are plotted red and orange.

At large enough energies the transients become short.
Figs. 5(a) and (b) show the attractor and the repeller of
Poincaré map at W = 125 (recall that the Poincaré cross-
section is u = 0 in both directions). Both are period-4
cycles and map into each other by involution R̂1 or R̂2 or
into itself by the symmetry Ĝ. At W ≈ 131.83 both the
attractor and the repeller undergo pitchfork bifurcations.
At figs. 5(c) and (d) one can observe two period-4 regular
attractors and two repellers (W = 140). Attractors map
into repellers by involution R̂1 or R̂2, also the attractors
map into their symmetric attractors and the repellers map
into repellers by the symmetric transformation Ĝ.

At W ≈ 148.43 attractors and repellers undergo pe-
riod doubling bifurcation. Figs. 6(a,b) show two period-8
attractors and two period-8 repellers of Poincaré map at
W = 150. At the interval of energies [148.53, 153.69] reg-
ular periodic attractors and repellers undergo a cascade of
period doubling bifurcations, until the chaotic attractors
and repellers arise. Examples of pair of chaotic attractors
and and pair of repellers are demonstrated at figs. 6(c,d)
(W = 155).

Approximately at W ≈ 158.5 two chaotic attractors
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Fig. 7: (a) Chaotic attractor and repeller of the Poincaré re-
turn map in projection onto the plane of variables η and ω.
Parameter values: W = 162 and µ = 10. (b) Attractor and
repeller in 3D phase space of the Poincaré map. Parameter
values: W = 162 and µ = 10. Attractor is plotted black and
repeller plotted red. (c) Chaotic attractor of the Poincaré re-
turn map in projection onto the plane of variables η and ω.
Parameter values: W = 164 and µ = 10. (d) Chaotic repeller
of the Poincaré return map in projection onto the plane of
variables η and ω. Parameter values: W = 164 and µ = 10.

merge into one and two chaotic repellers merge into one.
Figs. 7(a,b) show the only chaotic attractor and the only
repeller at W = 162. The uncommon phenomenon oc-
curs at W ≈ 163.65 — the attractor and the repeller
merge [25,26]: some of their parts occupy the same regions
of phase space. Simultaneously they increase in size ex-
plosively. Figs. 7(c,d) demonstrate chaotic attractor and
repeller at W = 164. One can easily imagine Panels (c)
and (d) imposed on each other and see that attractor and
repeller are practically inseparable.

Fig. 8(a) demonstrates bifurcation diagram for Poincaré
map of (9). Interestingly, a transition to chaos is observed
through the Feigenbaum period doubling bifurcation cas-
cade [48]. The estimated convergence constant to the
accumulation point corresponds to Feigenbaum’s number
δ = 4.69 . . . Such a transition is well known and typical in
dissipative nonlinear systems and was also observed in non
measure-preserving reversible diffeomorphisms [1,49]. The
repellers become chaotic just like the attractors. Fig. 8(b)
shows bifurcation diagrams for attractor (black dots) and
repeller (red).

Conclusion. – The considered simple model of Chap-
lygin sleigh under action of the quadratic potential field

Fig. 8: (a) Bifurcation diagram of attractors (values of ξ vs.
energy W ). µ = 10. All the attractors are marked black. (b)
Bifurcation diagram of attractors and repellers . µ = 10. The
slices for particular values of energy W are two-dimensional
(variables η and ω). All attractors are marked black, all re-
pellers are marked red.

has a combination of features intrinsic to nonholonomic
mechanical systems. It is governed by four-dimensional
autonomous system of ordinary differential equations. The
system possesses an energy integral and is time-reversible
with two distinct involutions, it is not integrable and lacks
the invariant measure. The model manifests the destruc-
tion of quasiperiodic tori with emergence of chaotic layers
at small energies of motion and the period doubling cas-
cade of bifurcations of regular attractors and repellers at
high energies, resulting in birth of chaotic attractors and
repellers. The chaotic attractors and repellers merge with
each other with explosive increase in size. Other nonholo-
nomic systems manifest similar phenomena, but they are
more sophisticated in comparison with the example de-
scribed here. The systems with potential forces are rela-
tively rarely examined in nonholonomic mechanics, so the
discussed model is an interesting and missed example. We
suppose, that our results may be of interest also to re-
searchers in other areas, where time-reversal symmetry is
of substantial role. In the matter of possible practical ad-
vantages the investigated mathematical model should be
supplemented in future research with modulation of exter-
nal forces in time as a way of control.
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