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For parametric generator composed of three LC-circuits and quadratic nonlinear element on the basis of 
the operational amplifier and analog multiplier the equations for the interacting mode amplitudes are 
derived. At frequencies providing the parametric resonance precisely, the problem reduces to a system of 
three differential-equations of the first order for the amplitudes with attractor of Lorenz type. In the 
presence of the detuning ot only to the dynamics of the amplitude is relevant, but also the phase 
dynamics. Attractor must be considered now in the six-dimensional phase space, and in contrast to the 
Lorenz attractor it is not quasi-hyperbolic. 
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Introduction 
This chapter is inspired by seminal works of M.I. Rabinovich and his collaborators in 70-th 
devoted to complex dynamics of parametric oscillators [1,2,3], mainly, by the article of 
Pikovsky, Rabinovich and Trakhtengerts [2]. It was shown there that in a case of 
parametric excitation of two modes by means of the pump at the sum frequency and the 
energy transfer to decaying third mode at the difference frequency chaotic dynamics can 
occur. Particularly, the authors of [2] considered the situation in application to waves in 
magnetized plasma. Assuming a quadratic nonlinearity, they formulated a system of 
amplitude equations, which in the case of a fixed phase relation was reduced to a system of 
three differential equations of the first order possessing the Lorenz type attractor. The same 
mechanism of chaos generation can be implemented with the parametric interaction of 
waves or oscillatory modes in various physical objects, such as mechanical, electronic, 
optical, acoustic systems [4-7]. 

Lorenz attractor is a popular example of a strange chaotic attractor [8-10], which was 
originally discovered in a model system of three first order differential equations for the 
problem of fluid convection in a layer heated from below. It belongs to a class of singular 
hyperbolic (quasi-hyperbolic) attractors [11,12] and generates robust chaos [13,14] in the 
sense that the chaotic behavior is not destroyed by a small variation of the system 
parameters. In the years after the Lorenz publication it became clear that this type of 
attractor may be related to many different natural systems, including laser dynamics [15-
16], mechanical systems based on the rigid body rotations [18-21] and others [22 -26]. 

Some aspects of the dynamics of the model of Pikovsky, Rabinovich and 
Trakhtengerts were analyzed later by other authors. In particular, it concerns the dynamics, 
accompanied by violation of the phase locking [30], comparison of the model with a 10-
dimensional system for the problem of the interaction of waves in plasma [31], and 
mathematical analysis of global dynamics [32]. In [33] an electronic parametric oscillator 
was considered based on three resonant LC circuits, the operation of which is provided by 
the decay mechanism of the instability saturation, where the parametric excitation and the 
interaction of modes take place due to the presence of a varactor diode. It has been found 
that with accurate description of the nonlinear characteristic of the diode, the equations for 
slow amplitudes are essentially represented in complex variables, so that in the dynamics 
of the excited oscillatory modes the phases are relevant, and the attractor ceases to be 
quasi-hyperbolic. In particular, this is expressed by appearance of domains of regularity in 
the parameter space, where the periodic dynamics occur instead of chaos, and attractors are 
represented by limit cycles. 
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In this presentation we analyze the parametric oscillator circuit similar to that in Ref. 
[33], but using a specially designed reactive nonlinear element composed on a basis of an 
operational amplifier and an analog multiplier, with the characteristic exactly given by a 
quadratic function. Because of this it is possible to realize the pure dynamics of the 
Pikovsky – Rabinovich – Trakhtengerts model in pure form; with exact parametric 
resonance conditions it manifests the Lorenz type attractor. In the case of violation of the 
exact frequency relations a situation occurs similar to that observed in Ref. [33]. Namely, 
the phase dynamics becomes relevant; the attractor ceases to be quasi-hyperbolic, and 
domains of regular dynamics appear in the parameter space besides the chaos. 

1. Parametric oscillator circuit diagram and the basic equations 
Consider the circuit diagram of Figure 1a. It is composed of three resonant circuits L1-C1, 
L2-C2 and L3-C3. Parametric excitation is provided by the pump from the AC voltage 
source V1 in presence of the quadratic nonlinear reactive element С

~
. 

 
Figure 1: The circuit diagram of the chaotic parametric oscillator (a). The pumping is provided by 

the voltage source V1. The symbol С
~

 denotes a reactive two-pole element with quadratic 
nonlinearity, the scheme of which is shown separately on the panel (b). 

The nonlinear element circuit diagram is shown separately in panel (b). When a 
voltage U is applied to the input of the element with respect to the ground, the potential U 
takes place on the both input terminals of the operational amplifier OA. Since the input 
impedance of the operational amplifier ideally is infinite, the presence of the current U/R 
through the resistor R, which has a grounded outlet, implies the presence of the same 
current through the second resistor R connected to the previous one, and thus the voltage at 
the input of the analog multiplier AM must be equal to 2U. Hence we have the voltage 

24KU  at its output. The currents through the one and the other capacitors C0 are 
dt

dU
C0  

and  UCKU
dt

d
0

24   comprise, in an amount, the current  24KU
dt

d
 through the nonlinear 

element. 
The natural frequencies of the LC resonant circuits (without taking into account the 

dissipation) will be assumed to satisfy, at least approximately, the parametric resonance 
conditions 
 213210 ,  . (1) 
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Figure 2 shows plots of voltages on the capacitors C1, C2 and C3 obtained from the 
virtual oscilloscope in the course of simulation using the Multisim environment of the 
circuit with the component values indicated in the figure caption. After the transient decay, 
a sustained regime of nonlinear oscillations persists. In the scale of the figure, the high-
frequency filling is indistinguishable, but one can observe clearly the irregular, apparently 
chaotic behavior of the amplitudes. 

 
Figure 2: Typical waveforms for the voltages across the capacitors C1, C2, C3 obtained by 
simulation of the circuit of Figure 1 using the Multisim environment. The component values: 
C1=C2=C3=40 nF, L1=1.583 mH, L2=4.398 mH, L3=9.895 mH, R1=250 k, R2=62.5 k, 
R3=250 k. The natural frequencies of the LC circuits are f1=20 kHz, f2=12 kHz, f3=8 kHz. 
Pumping is carried out by the voltage source V1 with amplitude of 0.245 V at the frequency 
f0=32 kHz. The capacitors in the circuit diagram of the nonlinear reactive element are of 
capacitance C0 = 2 nF; the transmission coefficient of the analog multiplier AM is K = 1/8 V-1. 

In a framework of the circuit simulation in Multisim it is difficult to get information 
concerning some of essential features of the dynamics including the expected presence of 
the Lorenz type attractor and to determine relevant characteristics such as the Lyapunov 
exponents. Therefore, in the following sections we will discuss the equations describing 
the system, and analyze some results of their numerical integration. 

2. Basic equations of the parametric oscillator  

Suppose that 321 ,, UUU  are voltages on the capacitors C1, C2, C3, and 321 ,, III   are currents 

through the inductors L1, L2, L3. Assuming equality of the capacities 321 СССC   for 
simplicity, write down the Kirchhoff equations as follows: 
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Here I is the current through the non-linear element defined by the expression 
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where 

 CKC /8 0 , tUUUUUU 000321 sin,  , (4) 

and the values of κ and 0 designate the amplitude and frequency of the pump signal. 
Using the normalized dimensionless time )2/( 3CRtt  , the equation can be rewritten as 

 ,3,2,1,,02 2
2
12  kUUXUUX kkkkkkk

  (5) 
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Figure 3: Typical waveforms of voltages across the capacitors C1, C2, C3, obtained from numerical 
integration of the equations (7) for the circuit shown in Figure 1, with component values indicated 
in the caption of Figure 2. 

For the numerical integration it is convenient to reformulate the problem representing 
it by the set of the first order differential equations 
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Figure 3 shows the time dependences for the quantities U1, U2, U3, obtained by 
numerical integration of the equations (7) with component values indicated in the caption 
to Figure 2 values. Comparing the plots in Figure 2 and 3, we can see a good agreement 
between the observed dynamics. In both cases we have chaotic waveforms containing 
similar fragments, and compliance in characteristic scales of times and voltages. (One 
should not expect to see exact correspondence of the waveforms because of the inherent 
sensitivity of the chaotic dynamics to small perturbations of the initial conditions.) 

3. Equations for slow amplitudes 

To obtain equations in a form that allows comparison with the Lorenz and Pikovsky – 
Rabinovich – Trakhtengerts models, it is necessary to apply the method of slow complex 
amplitudes. First, it is convenient to rewrite the equation considering only those terms, 
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which can contribute to the resonant interaction of the modes corresponding to the relation 
of the frequencies (1). In the first, the second and the third equations (5) one can set, 
respectively, 
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In addition, replace the operation of the second derivative of the nonlinear terms in the the 
equations by the multiplier )( 2

k . The result is 
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Omitting for brevity the prime at the time variable, we seek a solution in the form 
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where the reference frequencies 1,2,3 are defined as 
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Been close to the values 1,2,3 they satisfy the parametric resonance conditions precisely: 

 210213 ,  . (12) 

Use of (10) implies fulfillment of the additional equalities for the amplitude variables 

 0,0,0 332211 *
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Next, according to (4), we have 
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Substitution of (10) into Eqs. (9) yields 
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where 
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we obtain the equations exactly corresponding to Ref. [2]: 
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Here  is the dimensionless parameter of the amplitude of pumping. The value  can be 
adjusted by varying the pumping frequency and the  by varying the inductance L3. 
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4. Precise parametric resonance: Lorenz type attractor  
In the absence of detuning, =0, =0, using the substitution 

   iii zeayeaxea 2
321 ,,  (18) 

with const  we arrive at the equations 

 ,,, 21 xyzzxzyhxyyzxhyx    (19) 

which may be considered in the real domain.  

 

Figure 4: Attractor in the three-dimensional state space of the system (19) (a) and plot of the map 
for successive maxima of the variable z in the course of temporal evolution (b); parameters are 

962.5,4,1 21  h . 

According to [2], the model (19) has attractor of Lorenz type in the three-dimensional 
phase space of the variables x, y, z, which is true, particularly, in the case 

962.5,4,1 21  h . Figure 4 shows a portrait of the attractor, depicted with the results 
of numerical integration of the equations (19). Also, the plot is shown obtained in 
accordance with the procedure applied by Lorenz in his work [8]: on the axes are the 
values of the maxima of the variable z achieved sequentially during the time evolution of 
the system. The view of the plot with a sharp peak, which resembles a classic "saw tooth" 
map [8-10,2], indicates that the attractor is quasi-hyperbolic, just like the classic Lorenz 
attractor. 

The Lyapunov exponents calculation by joint numerical solution of equations (19) 
and the corresponding variational equations is based on a known algorithm with Gram - 
Schmidt orthogonalization perturbation vectors [37, 10] and yields 1 

 001.0394.6,0001.00000.0,001.0394.0 321  . (20) 

The presence of a positive Lyapunov exponent indicates occurrence of chaos, 
characterized by the exponential growth of the deviation from the reference trajectory on 
the attractor under small perturbations of the initial conditions. The second exponent is 
zero up to a calculation error; it is associated with a perturbation of a shift along the phase 
trajectory. The third exponent is negative and is responsible for the approach of the 
trajectories to the attractor. The fact that the sum of the exponents is negative indicates the 
volume compression in the three-dimensional phase space. It is consistent with the 

                                                 
1 Lyapunov exponents’ calculations were performed on time intervals of duration of 50,000 with the counting 
the average values and standard deviations on 20 samples. As an error, the standard deviations are indicated. 
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analytical calculation of the divergence of the vector field defined by the right sides of the 
equations (19): 61div 21  zzyyxx fffF . Estimate of the dimension of 

the attractor for the well-known formula of Kaplan – Yorke provides 
06.2||/2 31 D . 

Figure 5 shows the three Lyapunov exponents of the model (19) versus the parameter 
h. The smooth nature of the dependence and the lack of notable dips (regularity windows) 
for the senior exponent in the graph indicate the robustness of chaos in the three-
dimensional system (19) and correspond to the conclusion that the nature of the attractor is 
quasi-hyperbolic as motivated by the view of the graph displayed on Figure 4b. 

It is interesting to compare the Lyapunov exponents calculated at the same 
parameters for equations in real and complex amplitudes. For the system (17) at  =0, =0 
we have 

 
.003.0394.6,05.0381.5,05.0618.0

,0003.00000.0,0002.00000.0,001.0394.0

654

321




 (21) 

In this list, there are two zero exponents, one of which is associated with the shift 
perturbation along the phase trajectory, the second with the phase shifted in the variable φ 
(see (18)). The exponents 6,2,1  are in agreement with the exponents 3,2,1  from the list 

(20). Additional exponents 5,4  correspond obviously to the relaxation of phases to the 

situation described by equations for real amplitudes. Figure 5 shows the dependence on h 
for six Lyapunov exponents of the model (17), three of which are indistinguishable from 
those of the model (19). 

 
Figure 5: The dependence on the parameter h for the Lyapunov exponents. The exponents of the 
model (19) are marked as λ1−3 on the left side of the diagram, and those for the model (17) at =0, 
=0 are labeled as λ1-6 in the right part of the figure. Other parameters: 11  , 42  . 

If we talk about the system without reduction to the slow amplitudes (7) and a about 
the model with complex amplitudes (17), it would be incorrect to relate to them the 
conclusion concerning robustness of the Lorenz type attractor from the three-dimensional 
real model (19). A formal sign pointing to a possible violation of the robustness in this 
sense is the occurrence of the additional zero Lyapunov exponent in the complex system 
(17). In particular, introduction of the frequency detuning leads to a disruption of the phase 
relations (18) and to a change in the nature of the attractor. 
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5. Chaotic and regular dynamics in the parametric oscillator in 
presence of frequency detuning 
We now turn to the situation when the conditions of parametric resonance are not 
accurately fulfilled, and one has to take into account the frequency detuning of the pump 
from the sum of natural frequencies of the first and second oscillators, and detuning of the 
difference frequency from the frequency of the third oscillator. This corresponds to non-
zero parameters Δ, δ in the complex amplitude equations (17), which can not reduced now 
to the three-dimensional system for real amplitudes. 

In this situation, there is a problem of graphical presentation of attractors in the form 
allowing a visual comparison with the Lorenz attractor. We proceed from the fact that the 
approximate correspondence of instantaneous phase of the complex variables a1 and a2 to 
the formulas (18) roughly persists for the most part, although the value of φ, generally 
speaking, will not be constant in time. For graphical representation it is natural to use the 
variables  ieax 1Re ,  ieay 2Re , where φ is chosen each time to minimize the value 

2
2

2
1 )(Im)(Im   ii eaea . As the third variable we use || 3az  . 

Note that the same method can be used for processing data of the numerical solution 
of the original Kirchhoff equations (7) if convert the vectors defined by the voltages 
U=(U1, U2, U3)

T, to the complex amplitudes as 

 )( 3,2,1
1

3,2,13,2,12
1

3,2,1 UiUa  . (22) 

Figure 6a shows a portrait of the attractor, built with the results of the numerical 
integration of equations (17) in a mode corresponding to a slight shift of the pump 
frequency from the exact parametric resonance conditions at 962.5h , 11  , 42  , 

=0.3, =0. (In the original system, this corresponds to the pumping frequency of 
32001.2 Hz at amplitude of 62.25 mV setting resistances R1=1 M, R2=250 k, R3=1 M 
and the remaining components correspond to the caption of Figure 2.) The phase portrait 
looks like Lorenz type attractor: it has two "wings", each of which corresponds to orbit 
spiraling from the central blank area, with successive transitions from one wing to the 
other, and the committed numbers of turns vary from once again chaotically. 

Figure 6b shows a plot of the map, where the axes correspond to successive 
maxima of the variable || 3Az   achieved in the course of the temporal evolution of the 

system. The picture is significantly different from the map corresponding to the Lorenz 
type attractor in Figure 4. Firstly, the graph looks composed not of a single curve, but a set 
of curves, i.e. it possesses a transverse fractal structure expressed much stronger than that 
for the Lorenz type attractor, where it is visually indistinguishable. Secondly, the curves 
representing the mapping manifest smooth quadratic maxima instead of a sharp tip at the 
top. In this connection, in this case one can not speak of robust quasi-hyperbolic attractor. 
Rather, the properties of chaotic dynamics should be similar to attractors in the Hénon 
map [38] and Rössler model [39], which in mathematical works are interpreted within the 
concept of quasi-attractor [40,41]. 

Figure 7 shows the dependence of six Lyapunov exponents of the model (17) on 
parameters of the frequency detuning  and . Note the symmetry of one and the other 
graph in Figure 7; it occurs due to the fact that the equations transform into themselves in 
the application of the complex conjugation together with the sign change of  and . 

Unlike the case of exact resonance, the graph for the senior Lyapunov exponent 
manifests dips (the regularity windows), which are also accompanied by tips or dips in the 
graphs of other exponents. As one can verify by the numerical integration of the equations, 
these windows correspond to the emergence of attracting limit cycles in the phase space of 
the system (17), i.e., instead of chaos modes periodic oscillations of the amplitude 
variables arise. It is this kind of the plots for Lyapunov exponents depending on a 
parameter which is intrinsic particularly for one-dimensional maps with quadratic 
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extremum and for many other dissipative systems, including the Hénon map and the 
Rössler model, which are associated with the concept of quasi-attractor [38-41]. 

  

Figure 6: Three-dimensional portrait of the attractor, built using the techniques described in the text 
(a), and a plot of the map for successive maxima of the variable || 3az   (b) for the system (17) at  

962.5h , 11  , 42  , =0.3, =0. 

 
Figure 7: Lyapunov exponents of the model (17) versus parameter Δ at δ=0 (a) and versus 
parameter δ at Δ = 0 (b). Other parameters: 11  , 42  . 

Let us turn to the chart of dynamical regimes in the parameter plane Δ, δ. The 
procedure consists of scanning of a parameter space area in two dimensions over the grid 
nodes with some small step. At each point about 103 iterations of the Poincaré map is 

performed defined for the system (17) via the section surface 0|| 213  haS  in 

the phase space (in the direction of passage of the orbits with decreasing S). According to 
the latest iterations the analysis is carried out for the presence or absence of a repetition 
period of the states in the Poincaré section from 1 to 14 (with some accepted small level of 
errors). When the periodicity is detected, the corresponding pixel in the chart is indicated 
by some color depending on the period, and the procedure goes to analyze the next point in 
the parameter plane. As the initial conditions at the new point it is reasonable to assign the 
state resulting in the end of iterations in the previous point ("scanning with inheritance") to 
accelerate the convergence to the steady state dynamics. 
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Figure 8: A chart of the system (17) in the plane of parameters Δ and δ and portraits of attractors 
corresponding to representative points of the parameter plane. Other parameters: 962.5h , 

11  , 42  . 

In the center of Figure 8 the parameter plane chart is shown for the system (17), and 
on the periphery the portraits of attractors are depicted corresponding to some 
representative points of the parameter plane (Δ, δ). Attractors in panels (a), (c), (h), (e) to 
are limit cycles, i.e. periodic modes for oscillations of amplitudes in the colored parameter 
plane areas. On the other hand, attractors in the diagrams (b), (g), (f) are chaotic 
corresponding to not colored regions where the periodicity is not detected. Diagram (f) 
relates to the origin on the chart where the Lorenz type attractor occurs, which was 
discussed in the previous section. Dark blue areas in "north-west" and "south-east" parts of 
the chart correspond to the fixed point attractor of the Poincaré map (panel (e)) associated 
with a stable regime of stationary oscillations of constant amplitude in the initial equations.  

Similar regimes are observed in numerical simulations of the original system of 
Kirchhoff's equations (7). Figure 9 shows attractors related to the system with the pump at 
an amplitude of 62.25 mV, and the resistances R1=1 M, R2=250 k, R3=1 M. The 
frequency of the pump and inductance L3 were selected to provide the parameters Δ and δ 
indicated in the inscriptions, and the other parameter values correspond to the caption of 
Fig.2. The pictures clearly resemble those on the periphery of Fig. 8 with the difference 
that the trajectories on the attractors look a little "fluffed", which is obviously connected 
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with the presence of non-resonant components of relatively low amplitude contributing to 
the instantaneous values of dynamic variables, which were excluded in the amplitude 
equations. 2 

 
Figure 9: Portraits of attractors of the original Kirchhoff's equations (3) at the resistances 
R1=1 M, R2=250 k, R3=1 M and the pumping amplitude 62.25 mV. The pump frequency and 
the inductance L3 were set to provide the parameter values Δ and δ: -0.64, 1.92 (a); 0, 0.96 (b); 0.6, 
0.96 (c); 0,0 (d); 0.8, -1.92 (e); 0.8, -0.96 (f). The remaining parameters correspond to the caption 
of Fig.2. 

Conclusion 
We present analysis of the chaotic parametric oscillator based on three resonant 

circuits with pumping provided by periodic variation in voltage on a quadratic nonlinear 
element. It appears that the methodological value of the model is that it allows pure 
realization and exploration for the mechanism of parametric generation of chaos when two 
modes are excited due to the pump at the sum frequency, and the energy extraction is 
carried out by the mode at the difference frequency. This circuit may serve as an analog 
simulator for systems of different nature where the same mechanism of parametric 
oscillations take place, or, more widely, for systems where similar equations occur on 
some reason [42, 43]. 

If the case of deviation from the exact parametric resonance, instead of the quasi-
hyperbolic Lorenz type attractor one obtains the dynamics although resembling those of 
Lorenz, but lacking robustness: by varying parameters destruction of chaos appears to be 
possible with the emergence of regular motions. This conclusion has been illustrated 
particularly by the chart of the plane of the detuning frequency parameters, which gives a 
visual representation of location of areas of chaotic and regular dynamics. 

                                                 
2 The lack of a perfect match in the parameters with Fig.8 is due to the approximate nature of description in 
terms of slow amplitudes. 
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