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We study the hyperchaos formation scenario in the modified Anishchenko-Astakhov generator. Scenario is connected
with the existence of sequence of secondary torus bifurcations of resonant cycles preceding the hyperchaos emergence.
This bifurcation cascade leads to the birth of the hierarchy of saddle-focus cycles with two-dimensional unstable man-
ifold as well as of saddle hyperchaotic sets resulting from the period-doubling cascades of unstable resonant cycles.
Hyperchaos is born as a result of an inverse cascade of bifurcations of the emergence of discrete spiral Shilnikov
attractors, accompanied by absorbing the cycles constituting this hierarchy.

The scenario of the birth of a hyperchaotic attractor is
closely related to the scenario of the emergence of an in-
finite set of cycles with a multi-dimensional unstable man-
ifold making up its skeleton. For four-dimensional flows
there are not so many local bifurcations leading to the
birth of a cycle with a two-dimensional unstable manifold
- these are the torus bifurcation (often called Neimark-
Sacker bifurcation) of the stable cycle and the period-
doubling bifurcation of the saddle cycle. The birth of such
a cycle as a result of a saddle-node bifurcation is also possi-
ble, but this is not our case. The case under consideration
is interesting in that the two of the three possibilities are
involved. The cascade of creation of secondary tori from
stable resonance cycles leads to the appearance of the hier-
archy of saddle-foci arising as a result of Neimark-Sacker
bifurcations. At each stage of this cascade, saddle reso-
nance cycle appear, which undergoes a cascade of period-
doubling bifurcations. On the one hand the absorption of
these cycles by the attractor ultimately leads to the appear-
ance of hyperchaos. On the other hand this inverse cas-
cade of bifurcations of cycle absorbing is accompanied by
the emergence of discrete spiral Shilnikov attractors. Dis-
crete spiral Shilnikov attractors were discovered in 1986.
The term “hyperchaos” was introduced first in 1979. Both
events happened almost together but it took more than
30 years to combine them in the one universal scenario.
The existence of a large number of examples in which the
birth of hyperchaos is associated with the existence of sec-
ondary torus birth bifurcations and the occurrence of dis-
crete spiral Shilnikov attractors indicates the prevalence
of this scenario.
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I. INTRODUCTION

Hyperchaos1 is a dynamic regime characterized by at least
two positive Lyapunov exponents, that is, there are at least two
directions of extension in the phase space. Attractor of this
type can be implemented in flow systems with a dimension of
at least 4.

Chaos-hyperchaos transition scenarios usually refer to one
of two types: either trajectories belonging to a chaotic attrac-
tor lose stability in one more direction, or the attractor absorbs
an infinite number of trajectories with a two-dimensional un-
stable manifold2–9.

If orbits with a two-dimensional unstable manifold arise as
a result of the Neimark-Sacker bifurcation, then one of the
typical scenarios of their capture by an attractor is the ap-
pearance of so-called discrete spiral Shilnikov attractors10–13.
Such attractors have been found in 3D maps. They can also
occur in flow systems of dimension 4 and higher.

We consider here an example of a system in which cycles
with a two-dimensional unstable manifold arise as a result of a
cascade of Neimark-Sacker bifurcations (this results in a set of
saddle-foci of type (1,2)) and of cascades of period-doubling
of saddle resonance cycles near the transition to hyperchaos.
(The type of cycle is indicated here by a pair of numbers in
brackets, the first is the dimension of a stable manifold, the
second - of an unstable one.) In this case, hyperchaos is born
as a result of an inverse cascade of bifurcations of the emer-
gence and merging of discrete spiral Shilnikov attractors.

The paper is structured as follows. In Section II, we briefly
describe the object of research - the modified Anishchenko-
Astakhov generator, define and illustrate the regions of inter-
est to us in the parameter space. In Section III, we describe
the bifurcation structure of the period four synchronization
tongue. In Section IV, we will demonstrate a cascade of sec-
ondary Neimark-Sacker bifurcations, which results in the for-
mation of a hierarchy of saddle-focus cycles of type (1,2). In
Section V, we will demonstrate cascades of period-doubling
bifurcations of the saddle resonance cycles (of type (2,1)),
which results in the formation of a hierarchy of sets of sad-
dle cycles (of type (1,2)). In Section VI, we will demonstrate
the inverse cascade of the emergence of discrete spiral hyper-
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Cascade of torus birth bifurcations and inverse cascade of Shilnikov attractors merging at the threshold of hyperchaos 2

FIG. 1. Lyapunov exponents chart, a. and two-parameter bifurcation diagram, b. for the system (1) at d=0.001, γ = 0.2. c. Zoomed fragment
of Lyapunov exponents chart correspoding to the gray rectangle in Fig. 1b. LP are lines of the saddle-node bifurcations (black), PD are lines
of the period-doubling bifurcations (blue), TR are lines of the Neimark-Sacker bifurcation (green). Line l1 corresponds to g = 0.236, l2, l3 - to
m = 0.112, m = 0.115, respectively.

chaotic attractors as a result of the gradual absorption of sad-
dle cycles (1,2). Section VII will give final conclusions and
discussion about the universality of the observed bifurcations
and scenario.

II. MODIFIED ANISCHENKO-ASTAKHOV GENERATOR

In14,15, an autonomous four-dimensional dynamic system
is proposed, which is a radiophysical generator:

ẋ = mx+ y− xϕ −dx3,
ẏ =−x,
ż = ϕ,
ϕ̇ =−γϕ + γΦ(x)−gz.

(1)

where Φ(x) = I(x)x2, I(x) =
{

1, x > 0,
0, x ≤ 0 .

Here x, y, z, φ are the dynamic variables of the system,
m is the excitation parameter, d is the nonlinear dissipation
parameter, γ is the damping parameter, and g is the inertia
parameter.

Fig. 1a shows chart of Lyapunov exponents for system (1)
on the parameter plane (g, m). The values of the remaining
parameters are d = 0.001, γ = 0.2. The chart was constructed
in the following way: the plane of parameters is covered by
a grid of nodes; for each node, the spectrum of Lyapunov ex-
ponents was calculated. Depending on the spectrum signa-
ture, a point on the parameter plane was colored in one color
or another in accordance with the palette shown in the figure
(Table I shows the signature of the modes). Fig. 1b shows
two-parametric bifurcation diagram obtained using the pack-
age for numerical bifurcation analysis XPPAUT16. The lines
of saddle-node bifurcations (LP) are shown in black, the lines
of period-doubling bifurcations (PD) are shown in blue, and
the lines of Neimark-Saker bifurcations (TR) are shown in

green. In Fig. 1c a zoomed fragment of the chart is presented
corresponding to grey rectangle in Fig. 1b.

Mode Signature Color
Periodic Λ1 = 0,Λ4 < Λ3 < Λ2 < 0 Red
Torus Λ1 = Λ2 = 0,Λ4 < Λ3 < 0 Yellow
Chaotic Λ1 > 0, Λ2 = 0,Λ4 < Λ3 < 0 Grey
Hyperchaotic Λ1 ≥ Λ2 > 0, Λ3 = 0, Λ4 < 0 White
div The trajectory goes to infinity Blue

TABLE I. Correspondence of Lyapunov spectrum signature and
color designation of modes for Lyapunov exponent chart

The lower part of the plane of parameters (Fig. 1a) is occu-
pied by the region of existence of a stable cycle of period-1.
The period of the cycle was determined by the number of in-
tersections of the trajectory of the system with the plane of
the Poincaré section y = 0. As the parameter m increases,
the cycle of period-1 undergoes a Neimark-Sacker bifurcation
with the creation of an invariant circle in the Poincaré sec-
tion. In Fig. 1b this bifurcation line is denoted by symbol
1TR, here and further upper index before bifurcation symbol
designates the period of the cycle which undergoes bifurca-
tion. Fig. 1a clearly shows regions of periodic regimes, which
lies in the domain of quasiperiodicity. It is a set of Arnold
tongues (which are also called synchronization tongues) with
different ratio of frequencies located along torus birth bifur-
cation line. The vastest region is a period four Arnold tongue.
With increasing parameter m we can observe the destruc-
tion of a closed invariant curve via the Afraimovich-Shilnikov
scenario17. Further increasing of parameter m leads to regime
of divergency, when phase trajectories go to infinity. Inside
Arnold tongue of period 4 (magnified part of which is shown
in the Fig. 1c) we can see a narrow domain of of hyperchaotic
regimes. Let us discuss in more detail the bifurcation diagram
presented in Fig. 1b which defines the structure of this tongue.
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Cascade of torus birth bifurcations and inverse cascade of Shilnikov attractors merging at the threshold of hyperchaos 3

III. PERIOD FOUR ARNOLD TONGUE

Fig. 1b presents two-parametric bifurcation diagram, where
we focus on the bifurcation lines forming period-4 Arnold
tongue and development of complex behavior inside it. As
usual the boundaries of Arnold tongue are formed by two
saddle-node bifurcation lines, (4LP11 and 4LP12), emerging
from the point located at the Neimark-Sacker bifurcation line.
As a result of saddle-node bifurcation a pair of period four
cycles appears, stable and unstable one. Inside the tongue un-
stable cycle undergoes period-doubling bifurcation, the cor-
responding bifurcation line is denoted in the figure as 4PD11.
The stable cycle may also undergo period-doubling bifurca-
tion (4PD12 line) near the right border of the tongue, but in the
left part of the diagram it changes for Neimark-Sacker bifurca-
tion (4TR line). This two lines intersect at the codimension-2
resonance 1:2 point, denoted by symbol R. In Fig. 1b with
symbol f f we denote another codimension-2 point where
saddle-node and period-doubling bifurcation lines touch. This
is so called fold-flip point27 . Below this point as a result of
saddle-node bifurcation a pair of stable and saddle cycles is
born. Above this point both cycles in pair are saddles, but they
have different dimensions of unstable and stable manifolds.

Fig. 2 shows three one-parameter bifurcation diagrams for
the simplest period 4 resonance cycle. In these diagrams, we
marked cycles of various types with three colors: green - sta-
ble limit cycles P(3,0), blue - cycles with one-dimensional
unstable manifold S(2,1), and orange - cycles with two-
dimensional unstable manifold S(1,2). We chose two direc-
tions of scanning the parameter plane: varying the parameter
m (Fig. 2a) and g (Fig. 2b, 2c). In Fig. 1b we have marked
corresponding routs by violet lines l1, l2, l3.

Along line l1 in Fig. 2b we fix g = 0.236. At m = 0.1201,
as a result of the saddle-node bifurcation (marked as 4LP11 in
Fig. 1 and Fig. 2), a pair of cycles 1×4P1(3,0) and 1×4S2(2,1)
is born. Here index 1×4 indicates that it is period-4 resonant
cycle born on period-1 invariant curve, while subscript index
denotes the number index of the bifurcation branch and of the
point on the branch. With an increase in the parameter m at
m = 0.1229, the stable cycle 1×4P1(3,0) undergoes Neimark-
Sacker bifurcation (4TR) and transforms into a saddle with
a two-dimensional unstable manifold 1×4S1(1,2). The saddle
cycle 1×4S2(2,1) for m = 0.1237 undergoes a period-doubling
bifurcation (4PD11), as a result of which it also transforms
into a saddle cycle with a two-dimensional unstable mani-
fold 1×4S2(1,2). Then both branches arrive at the point m
= 0.1675, where they merge as a result of a saddle-node bi-
furcation (4LP12), while cycle 1×4S2(1,2) again undergoes a
period-doubling bifurcation (4PD12) at m = 0.1674 and trans-
forms into 1×4S2(2,1). Continuation of doubled cycles from
period-doubling bifurcation points of saddle cycles produces
a complex structure in the parameter space - a cascade of dou-
bling of unstable cycles (in Fig. 2a the next two bifurcation
points are presented 4PD21 and 4PD31), which forms a set
of branches of saddle cycles with a two-dimensional unsta-
ble manifold. It should be noted that with an increase in the
parameter m on the Lyapunov exponents chart (Fig. 1) it is
clearly seen that soon enough (m ≈0.127) the trajectories be-

gin to run away to infinity, in Fig. 2a this transition is indicated
by a red line.

FIG. 2. Bifurcation diagrams for different scan paths across syn-
chronization tongue of period 4, d = 0.2, γ = 0.001. a) g = 0.236,
b) m = 0.112, c) m = 0.115. LP are points of the saddle-node bi-
furcations, PD are points of the period-doubling bifurcations, TR are
points of the Neimark-Sacker bifurcation. Red line lD is threshold
of existence stable modes in model (1). Grey color in Fig.2a marks
interval corresponding to hyperchaos.

The Fig. 1b shows that the line of period-doubling and
Neimark-Sacker bifurcations have a threshold. Hence for
small values of the parameter m, there are no bifurcations in
which a pair of resonance cycles would be involved. As the
parameter m increases, the period-doubling bifurcation line
first appears, and then the Neimark-Saker bifurcation line. It
is convenient to track the peculiarities of the observed bifurca-
tions by varying the parameter g, since in this case a simpler
structure of the parameter space is observed. We will fix two
moderate values of the parameter m: m = 0.112 and m = 0.115,
at which we will intersect each of the bifurcation lines, while
still not entering the region of strong complication of the dia-
grams. Figures 2b and 2c show diagrams for m = 0.112 and
m = 0.115, respectively (routes l2 and l3 in Fig. 1b).

On the one-parameter continuation diagram at m = 0.112,
it is clearly seen that on the boundary of the synchronization
tongue of period-4, a pair of cycles 1×4P1(3,0) and 1×4S2(2,1)
(4LP11, g=0.2445) is born. As the parameter g increases,
the saddle cycle first undergoes a period-doubling bifurca-
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Cascade of torus birth bifurcations and inverse cascade of Shilnikov attractors merging at the threshold of hyperchaos 4

tion (4PD11, g = 0.2607), and then the stable cycle (4PD12,
g = 0.2661) doubles, after which two saddle cycles 1×4S1(2,1)
and 1×4S2(1,2) merge at the point of saddle-node bifurcation
(4LP12, g = 0.2677). The continuation of the cycle from the
period-doubling bifurcation point (4PD11, g = 0.2607) yields
one more bifurcation line, on which two saddle-node bifurca-
tions of the merging of cycles (2,1) and (3,0) are observed,
after which the branch of the saddle cycle (2, 1) comes to the
period-doubling bifurcation point (4PD12, g = 0.2661), which
is subcritical. Thus, for small values of the parameter m, the
bifurcation diagram mainly demonstrates cycles with a one-
dimensional unstable manifold.

As the parameter m increases, this situation changes.
Fig. 2c shows a diagram for m = 0.115. In this case, the sta-
ble cycle 1×4P1(3,0), born on the boundary of the saddle-node
bifurcation (4LP11), undergoes a Neimark-Saker bifurcation
(4TR), and becomes a saddle type with two-dimensional un-
stable manifold 1×4S1(1,2), then an inverse Neimark-Sacker
bifurcation (4TRr) is observed and the cycle 1×4S1(1,2) is
again transformed into 1×4P1(3,0). After that, a period-
doubling bifurcation (4PD12) occurs with it, and one of the
directions of its manifold becomes unstable 1×4S1(2,1). And
finally, this cycle at the point of the saddle-node bifurcation
(4LP12) merges with the cycle 1×4S2(1,2), which in turn ap-
peared as a result of the period-doubling bifurcation (4PD11)
from the cycle 1×4S2(2,1).

If we build a continuation from the period-doubling points,
then a new bifurcation branch appears, which also demon-
strates various bifurcations. As a result of doubling (4PD12), a
doubled cycle 1×4×2S1(2,1) is born. The cycle 1×4×2S1(2,1) at
the point of the saddle-node bifurcation merges with a new
cycle 1×4×2P1(3,0). With the cycle 1×4×2P1(3,0) a period-
doubling bifurcation (4PD22) occurs and it transforms into
1×4×2S2(2,1), which at the point of the saddle-node bifurca-
tion merges with the cycle 1×4×2S2(1,2), which also originates
from the original bifurcation diagram and undergoes period-
doubling. The figure shows a branch coming out of the period-
doubling bifurcation point 4PD21. Continuation of the cycle
born from the third period-doubling bifurcation (4PD31) gives
similar sequence of bifurcation and new branch of bifurcation
diagram with two-dimensional unstable manifold.

To conclude the section, it is clearly seen that with an in-
crease in the parameter m within the basic bifurcation dia-
gram, the dynamics become more complex. In particular, a
set of saddle cycles (1×4S2(1,2), 1×4×2S2(1,2) and so on) with
a two-dimensional unstable manifold is formed via cascade
of period-doubling bifurcations of saddle resonance cycle and
bifurcation of torus birth of stable cycle. Complicated bifurca-
tion scenarios related to codimension-2 bifurcation points are
beyond the scope of the present paper. The aim of this section
was to give a sketch of bifurcations forming the period-4 syn-
chronization tongue. Further we will focus on studying the
formation of hyperchaotic attractor. The area of interest for us
in the parameter space is marked by grey rectangles in Fig. 1b
(magnified in Fig. 1c) and in Fig. 2a.

IV. NEIMARK-SACKER BIFURCATION CASCADE IN
THE MODIFIED ANISCHENKO-ASTAKHOV GENERATOR

One of the possible paths that the Afraimovich-Shilnikov
scenario can take is when the invariant curve loses its smooth-
ness since a pair of multipliers of a stable resonance cycle be-
comes complex conjugate, and the cycle itself then undergoes
a Neimark-Sacker bifurcation with the formation of a new sta-
ble invariant curve, which subsequently collapses according
to the same scenario, thus forming a cascade of secondary
Neimark-Sacker bifurcations. The possibility of the appear-
ance of a cascade of Neimark-Sacker bifurcations of reso-
nance cycles as a result of such a recursive scenario has been
known for a long time18,19. In the case of three-dimensional
systems, new types of attractors do not arise.

FIG. 3. Phase portraits of the attractors, g=0.236. a) m=0.095 –
cycle 1P; b) m=0.11 – torus 1T ; c) m=0.12 – chaos; d) m=0.122 –
resonance cycle 1×4P; e) m=0.1235 – torus 1×4T ; f) m=0.1244 –
resonant cycle 1×4×7P; g) m=0.12445 – torus 1×4×7T ; h) m=0.125 –
hyperchaos 1×4H
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Cascade of torus birth bifurcations and inverse cascade of Shilnikov attractors merging at the threshold of hyperchaos 5

Systems of higher dimension are another matter. In this
case, the appearance of attractors characteristic only for sys-
tems of dimension four and higher is possible: - Shilnikov
discrete spiral and hyperchaotic. The possibility of the ap-
pearance of hyperchaos in systems with secondary Neimark-
Sacker bifurcations is discussed in20–26.

Let us consider the evolution of regimes along the direction
g = 0.236 (route l1 in Fig. 1). Fig. 3 shows the phase por-
traits of attractors for different values of the parameter m in the
Poincaré section y = 0. First, for small values of m, the system
demonstrates a stable 1P cycle of period one, Fig. 3a. This
cycle undergoes a Neimark-Sacker bifurcation 1TR, turning
into a saddle-focus 1S of type (1,2), with a two-dimensional
unstable manifold and a one-dimensional stable one, while a
stable torus 1T is born (represented by an invariant circle in
Fig. 3b). The torus becomes chaotic with increasing m ac-
cording to the Afraimovich-Shilnikov scenario (Fig. 3c), and
then we find ourselves in the resonance region of period 4
(Fig. 3d). This synchronization tongue reaches here from the
1TR bifurcation line (see Fig. 1). In this region, there is a sta-
ble 1×4P resonance cycle and a paired 1×4S saddle cycle of
period 4. The stable cycle, in turn, loses its stability via the
Neimark-Saker bifurcation (4TR) with the formation of a sta-
ble 1×4T torus (invariant circle of period 4 in Fig. 3e) and a
1×4S saddle-focus of type (1, 2). This torus also chaotizes,
followed by a region of resonance of period 28 with cycles
1×4×7P and 1×4×7S, followed by a region of existence of the
torus 1×4×7T , and so on. Fig. 4 shows a phase portrait of a
torus 1×4×7×9×9×10T in the Poincaré section.

FIG. 4. Phase portrait of the torus attractor 1×4×7×9×9×10T ,
m=0.124457208289, g = 0.236, d = 0.2, γ = 0.001.

This entire cascade accumulates near the threshold of hy-
perchaos. Fig. 5a shows a graph of the dependence of the two
largest Lyapunov exponents (excluding the trivial zero one)
on the parameter m. Figures 5b, 5c, 5d, 5e show successive
enlarged fragments of these graphs in the immediate vicinity
of the point at which the hyperchaos occurs. The plots show
the points of the Neimark-Sacker bifurcations TR of the res-
onance cycles. As a result of the cascade of Neimark-Sacker
bifurcations, there is a hierarchy of saddle-focus cycles at the

accumulation point. The inverse cascade of absorption by the
attractor of a set of these cycles with a two-dimensional unsta-
ble manifold leads to the fact that the attractor formed behind
the accumulation point turns out to be hyperchaotic; it will be
shown in Section VI.

FIG. 5. Graphs of the two largest Lyapunov exponents with a se-
quential magnification in the vicinity of the hyperchaos threshold.
The points of Neimark-Sacker bifurcations TR of resonance cycles
and the regions of existence of hyperchaotic attractors of various pe-
riods are indicated. g = 0.236, d = 0.2, γ = 0.001.

V. CASCADES OF PERIOD-DOUBLING BIFURCATIONS
OF SADDLE RESONANCE CYCLES

As was mentioned in Sect. III, in parallel to the above-
described cascade of Neimark-Sacker bifurcations of stable
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Cascade of torus birth bifurcations and inverse cascade of Shilnikov attractors merging at the threshold of hyperchaos 6

resonance cycles, the evolution of unstable resonance cy-
cles develops. Each of them undergoes a cascade of period-
doubling bifurcations, as a result of which a saddle hyper-
chaotic set arises in the phase space. Tables II and III show
the bifurcation values of the parameter m for the first steps of
the cascade for unstable cycles 1×4×7S and 1×4×7×9S.

Cycle period m
28 0.124370616
56 0.124427167
112 0.124450152
224 0.124455662

TABLE II. Bifurcation values of the parameter m for the first steps
of the cascade for unstable cycle 1×4×7S.

Cycle period m
252 0.1244564989
504 0.1244571880
1008 0.1244574263

TABLE III. Bifurcation values of the parameter m for the first steps
of the cascade for unstable cycle 1×4×7×9S.

VI. INVERSE CASCADE OF DISCRETE SPIRAL
HYPERCHAOTIC ATTRACTORS MERGING

As a result of the cascade of Neimark-Sacker bifurcations,
there is a hierarchy of saddle-focus cycles S(1,2) at the ac-
cumulation point, as well as dual sequence of saddle hyper-
chaotic sets. The inverse cascade of absorption by the attractor
of the set of these cycles possessing a two-dimensional unsta-
ble manifold leads to the fact that the attractor formed behind
the accumulation point turns out to be hyperchaotic

In Fig. 5 gray color indicates the regions of existence of
hyperchaotic attractors H arising at successive stages of de-
velopment of the inverse absorption cascade of saddle-focus
cycles S(1,2).

As a typical in the case under study phase portrait of a
hyperchaotic attractor, Fig. 6a shows an attractor 1×4×7×9H
(only a part of the attractor is shown; i. e. only every 28th
iteration is displayed). In the following pictures, Fig. 6 illus-
trates the process of transformation of the attractor 1×4×7×9H
into the attractor 1×4×7H. In Fig. 6a, besides the attractor,
crosses indicate the elements of several cycles from those that
constitute the saddle hyperchaotic set arising as a result of
the period-doubling cascade of the unstable resonance cycle
1×4×7×9S. First, the attractor absorbs cycles from this hyper-
chaotic set, while the individual elements of the 1×4×7×9H
attractor are combined into a ring with a “hole” in the mid-
dle, in which the element of the saddle-focus cycle 1×4×7S
is located, Fig. 6b. Then, in accordance with the scenarios
proposed in12,13, it becomes possible for the attractor to ab-
sorb the saddle-focus cycle 1×4×7S with the emergence of a
homoclinic bifurcation of the closure of the stable and unsta-
ble manifold of this cycle. This gives rise to discrete spiral

Shilnikov attractor. In Fig. 6c, it can be seen that the attractor
covers its entire inner region.

FIG. 6. Transformation of the attractor from the 252-component hy-
perchaotic 1×4×7×9H into the 28-component hyperchaotic 1×4×7H
in the supercritical region; a) m = 0.124457465; b) m = 0.12445748;
c) m = 0.1244620. The crosses indicate the cycles included in the
saddle hyperchaotic set, purple - period 252, blue - 504, green -
1008. The purple circle in the center indicates the saddle-focus of
period 28.

VII. DISCUSSION

Due to its limitations, numerical analysis cannot give an
answer to the question of the finiteness or infinitness of the
cascade of Neimark-Sacker bifurcations on the border of the
origin of hyperchaos. Nevertheless, it may be suggested that
attractor eventually chaotizes in some way, for example via
period-doubling scenario, and then experiences the transition
from chaos to hyperchaos by absorbing the cycles which arise
along with the cascade of Neimark-Sacker bifurcations. The
paper26 points out the role that the absorbing the saddle-focus
cycles and emergence of a discrete spiral Shilnikov attractor
play in the formation of a hyperchaotic attractor. However,
absorbing only finite number of saddle-focus cycles seems
insufficient for the attractor to became hyperchaotic, it re-
quires the absorption of an infinite number of orbits with two-
dimensional unstable manifold2–4. We show here the way the
needed cycles may be emerged via the period doubling cas-
cades of unstable cycles.

In this paper, we propose a mechanism for the emergence of
a hyperchaotic attractor in systems with a secondary Neimark-
Sacker bifurcation in synchronization tongues. The existence
of a cascade of Neimark-Sacker bifurcations at the threshold
of the appearance of hyperchaos and an inverse cascade of
absorption bifurcations of a set of saddle-focus cycles and hy-
perchaotic saddle sets arising as a result of cascades of period-
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doubling bifurcations of saddle resonance cycles is demon-
strated. It can be assumed that this mechanism is quite general
and manifests itself in systems of a very different nature20–26.
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