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Spin-torque oscilator

Spin-torque oscillator is a nanoscale

spintronic device generating periodic

microwave (in the frequency range of

several GHz) oscillations
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Spin-torque oscilator

• Three-layers: two ferromagnets with a

diamagnet in between

• The lower layer is fixed: it has constant

magnetization ~p

• The upper layer is free, its

magnetization ~m can be changed

• Current flows downward so electrons

run upward
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Spin-torque oscilator

• When moving through the lower layer

electrons are polarized: align their spins

along ~p

• Then they come to the upper layer

through the diamagnet and loses their

polarization

• Due to conservation of angular

momentum the magnetization ~m of the

upper layer starts to oscillate
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Landau–Lifshitz–Gilbert–Slonczewski equation

Model of dynamics of the spin-torque oscillator:

~̇m =− ~m× ~hheff − α · ~m×
(
~m× ~hheff

)
−

− β · ~m× (~m× ~p) + α · β · ~m× ~p

Magnetizations are normalized: ‖~p‖ = 1, ‖~m‖ = 1.

Unit norm of ~m is preserved (dynamics on sphere).

α is damping constant, β is proportional to the current ~j and
contains material parameters, ~hheff is effective magnetic field.
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Landau–Lifshitz–Gilbert–Slonczewski equation

~hheff = Ku(~m, ~u)~u−N ~m+ ~hext

• Ku(~m, ~u)~u is an easy-axis filed (anisotropy field), where ~u is
a unit vector of anisotropy (the easy-axis) and Ku is an

anisotropy constant.

• N ~m is a demagnetizing field, where N is a diagonal matrix

with elements Nx +Ny +Nz = 1 (geometry-dependent
demagnetization coefficients).

• ~hext is an external magnetic field.
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Single oscillator

6 fixed points, limit cycle

Taken from Я.В. Туркин, П.В. Купцов Изв. вузов «ПНД», т. 22, №6, 2014
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Coupling schemes

• Oscillators are stacked into a linear array and share the

common current ~j. The current depends on the stack
resistance and the resistance depends on the oscillator

magnetizations ~mi. [Zaks, M., Pikovsky, A. Sci Rep 7, 4648

(2017)]

• Oscillators are located in plane (in space) and interact via

magnetic fields of each other. To avoid global coupling via

common filed unnecessary influences are blocked with the

help of diamagnet isolators. [Я.В. Туркин, П.В. Купцов Изв.

вузов «ПНД», т. 22, №6, 2014]
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Coupling via magnetic fields
As known from electrodynamics, in linear approximation

magnetic filed is proportional to magnetization:

~H = χm ~H

where χm is the volume magnetic susceptibility.

The coupling via magnetic fields can be introduced via adding

terms to the effective filed:

~hheff → ~hheff + ε
∑
i

~mi

where ε is coupling strength.
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Network of coupled spin-torque oscillators

~̇mn =− ~mn × (~hheff)n − αn · ~mn ×
(
~mn × (~hheff)n

)
−

− βn · ~mn × (~mn × ~pn) + αn · βn · ~mn × ~pn

(~hheff)n = (Ku)n(~m, ~un)~un −Nn~mn + ~hext + εn

S∑
i=1,i6=n

ani~mi/kn

where ani is coupling matrix and kn is its row sum.

The external field ~hext can be assumed to be the same for all oscillators.

ann = 0 because ~mn × ~mn = 0.
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Remark on normalization issues

The oscillators are different but magnetizations ~mn are normalized so that

‖~mn‖ = 1.

What if the magnetizations have actually different magnitudes?

In this case our coupling via magnetic fields via εn
∑S

i=1,i 6=n ani ~mi/kn must be

rewritten as
∑S

i=1,i 6=n εniani ~mi/kn where εni takes into account different
magnitudes.

But this is not the case, since the original magnitudes of the magnetization

depend only on the material, since this is so called saturation magnetization:

~mn = ~Mn/ ~Ms

For example cobalt: ~Ms = 1.4 · 106 Am−1
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Kuramoto order parameter

Kuramoto order parameter (measure of phase synchronization):

p[φ(t), ψ(t)] =
∣∣∣〈ei[φ(t)−ψ(t)]

〉
t

∣∣∣
Works well only if φ(t)− ψ(t) = const

• fails if φ(t)− ψ(t) oscillates periodically, however this is
still phase synchronization

• fails if nφ(t)−mψ(t) = const (or periodic), however this is
n : m synchronization
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Generalized Kuramoto synch criterion

Prepare two arrays of N elements: for φ and for ψ.

Cells correspond to ranges [2iπ/N, 2(i+ 1)π/N),
i = 0, . . . , N − 1 (just like in histogram computation).

Given new φ and ψ find cell indexes iφ and iψ.

Compute e(φ, ψ) = ei[φ−ψ] and add it to the corresponding cells.
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Generalized Kuramoto synch criterion

When computations are over, divide values collected in each

cell by the corresponding count (averaging).

The result p is the largest value from both arrays.

Synchronization when p ≈ 1.
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Generalized Kuramoto synch criterion

Why it works betters then simple Kuramoto order parameter:

When oscillations are synchronized ∆ = φ− ψ can oscillate

periodically. If∆ is computed it at fixed φ or ψ it is constant.

∆(φ) or∆(ψ) can be unambiguous. This is avoided by taking
the largest value in two arrays.

15



Generalized Kuramoto synch criterion

We can also reveal n:m synchronization.

Let ψ = 2φ (1:2 synchronization).

Function ∆(ψ) is unambiguous so that 〈e(φ, ψ)〉 is small.
But ∆(φ) have constant ∆ for each particular φ so that
〈e(φ, ψ)〉 = 1.
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Generalized Kuramoto synch criterion

How it works for quasiperiodicity: ψ = φ(
√
5 + 1)/2.

The resulting criterion will be small because both ∆(φ) and
∆(ψ) are unambiguous.
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Generalized Kuramoto synch criterion

Detection of fixed points: at fixed point p = 1 and only one cell
in array of phases is filled (provided that phase still can be

defined).

In rare cases two cells can be filled if a constant phase fits

exactly the boundary between cells, e.g. at φ = π. Due to
numerical errors two neighboring cells will be filled. It must be

checked separately.

Thus if one cell in both phase arrays are filled we conclude that

this is a fixed point and set p = 0.
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Angle coordinates

Spherical coordinates (r = 1)

φ = atan2(my,mx), θ = atan2(
√
m2
x +m2

y,mz)

Compute separately sync. criterion for φ and θ, pφ and pθ.

p =


0 if pφ = 0 and pθ = 0

(pφ + pθ)/2 if pφ > 0 and pθ > 0

pφ if pθ = 0

pθ if pφ = 0
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Multistability

Network of spin-torque oscillators demonstrates multistability.

In this study we avoid it and fix constant initial conditions.
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Remote synchronization

Starlike network: peripheral oscillators get synchronized while

the central one is not.

Oscillators must be different.

To observe remote synchronization in networks of spin-torque

oscillators we set eigen frequency of the central one being

strongly different from the others.

The frequency is controlled by β.

We are going to consider charts of Lyapunov exponents and

Kuramoto synchronization parameters vs. ε (coupling strength)
and β1 (controls frequency of the central oscillator).
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Two oscillators

eps: [*]
alf: [0.02]
bet: [*, -0.0015]
Ku: [0.001]
u:
- [0, 1, 0]

p:
- [0, 0, 1]

N:
- [0.0490, 0.0777, 0.8733]
- [0.0645, 0.0774, 0.8581]

Oscillator 1 is controlled
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Two oscillators

There are 2× 3 = 6 Lyapunov exponents, 2 zeros due to ‖~m‖ = 1

• Ch: Chaos, λ1 > 0

• FP: Fixed point, λ1,2 = 0, λ3,4,5,6 < 0

• Cyc: Limit cycle (synchronization), λ1,2,3 = 0, λ4,5,6 < 0

• 2T: Two freq. torus (no synchronization), λ1,2,3,4 = 0, λ5,6 < 0

Synchronization criterion p

• p ≈ 1 - synchronization

• p = 0 - fixed point
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Two oscillators, charts

Lyapunov exps. chart Sync. chart

(a) Chaos, (b) 2-Torus, (c) Cycle, (d) Cycle
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Two oscillators: (a) Chaos

ε = 0.002, β1 = −0.0053: λ1 = 0.0148, λ2,3,4 = 0,

λ5 = −0.0145, λ6 = −0.0303, p = 0.71
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Two oscillators: (a) Chaos
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Two oscillators: (b) 2-Torus

ε = 0.0004, β1 = −0.008 (no sync): λ1,2,3,4 = 0,

λ5 = −0.0123, λ6 = −0.0155, p = 0.96
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Two oscillators: (b) 2-Torus
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Two oscillators: (c) Cycle

ε = 0.003, β1 = −0.0066 (sync): λ1,2,3 = 0,

λ4 = −0.0077, λ5 = −0.00775, λ6 = −0.0135,

p = 0.9996
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Two oscillators: (c) Cycle
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Two oscillators: (d) Cycle

ε = 0.0039, β1 = −0.0011 (sync): λ1,2,3 = 0,

λ4 = −0.00862, λ5 = −0.00862, λ6 = −0.0153,

p = 0.99992
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Two oscillators: (d) Cycle
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3-Star

eps: [*]
alf: [0.008, 0.010, 0.011, 0.012]
bet: [*, -0.0010, -0.0011, -0.0012]
Ku: [0.08]
u:
- [0, 1, 0]

p:
- [0, 0, 1]

N:
- [0.0318, 0.1269, 0.8413]
- [0.0320, 0.1269, 0.8411]
- [0.0319, 0.1270, 0.8411]
- [0.0317, 0.1271, 0.8412]

Oscillator 1 is controlled
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3-Star: Lyapunov exps. chart
There are 4× 3 = 12 Lyapunov exponents, 4 zeros due to ‖~m‖ = 1

• Ch: Chaos, λ1 > 0

• FP: Fixed point, λ1−4 = 0

• Cyc: Full sync, λ1−5 = 0

• 2T: 2-Torus, λ1−6 = 0

• 3T: 3-Torus, λ1−7 = 0

• 4T: 4-Torus, λ1−8 = 0

• 5T: 5-Torus, λ1−9 = 0

Horizontal stripe at β1 = −0.0065 is a numerical artifact.

No 5-Torus observed.
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3-Star: Lyapunov exps. chart

• (a) Chaos

• (b) Cycle

• (c) 2-Torus (remote sync)

• (d) 3-Torus

• (e) 4-Torus
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3-Star: Pairwise sync. charts
Gray areas indicate phase synchronization.
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3-Star: (a) Chaos

λ1 = 0.00530, λ2,3,4,5,6 = 0, λ7−12 < 0,
p12 = p13 = 0.995, p23 = 1

Extra zero Lyapunov exponent λ6 due
to synchronization of oscs. 2 and 3
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3-Star: (b) Cycle

λ1,2,3,4,5 = 0, λ6−12 < 0, pij = 1

Full synchronization: center with rays

5:1, rays 1:1
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3-Star: (c) 2-Torus
λ1−6 = 0, λ7−12 < 0, p12,13,14 = 0.53,
p23,24,34 = 0.9998

Rays are synchronized while center is

not: remote synchronization

Amplitude of the center approx. two

times smaller then the amplitude of

the rays. Its frequency is approx. one

order higher.
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3-Star: Remote synchronization

Oscillators 2, 3, and 4 get synchronized
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3-Star: (d) 3-Torus

λ1,2,3,4,5,6,7 = 0, λ8−12 < 0,
p12,13,14 = 0.51, p23 = 0.99, p24 = 0.83,
p34 = 0.92
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3-Star: (e) 4-Torus

λ1,2,3,4,5,6,7,8 = 0, λ9−12 < 0
p12,13,14 = 0.51, p23 = 0.98, p24 = 0.75,
p34 = 0.91
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3-Star: Transition to remote synchronization
Area A: Transition to remote synchronization occurs via Neimark–Sacker

bifurcation at the left edge and via hard excitation at the right edge.

Area B: Hard excitation.
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3-Star: Transition to remote synchronization

All computations are done with the same initial conditions.

Hard excitation: multistability, subcritical bifurcation.
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2-Star (chain of three nodes)

eps: [*]
alf: [0.008, 0.010, 0.012]
bet: [*, -0.0010, -0.0012]
Ku: [0.08]
u:
- [0, 1, 0]

p:
- [0, 0, 1]

N:
- [0.0318, 0.1269, 0.8413]
- [0.0320, 0.1269, 0.8411]
- [0.0317, 0.1271, 0.8412]

There are 3× 3 = 9 Lyapunov exponents, 3 zeros due to ‖~m‖ = 1

Oscillator 1 is controlled
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2-Star: Synchronization charts

Observe similarity of charts with 3-star. Letter (a) marks remote

synchronization

46



2-Star: (a) Remote synchronization

λ1−5 = 0, λ6−9 < 0,
p1,2 = 0.512,
p1,3 = 0.510, p2,3 = 1

2-Torus: Remote

synchronization

Observe again small

amplitude of the

center and high

frequency.
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2-Star: Transition to remote synchronization

The same scenario as for 3-Star
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4-Star

eps: [*]
alf: [0.008, 0.010, 0.011, 0.012, 0.013]
bet: [-0.005, -0.0010, -0.0011, -0.0012, -0.0013]
Ku: [0.08]
u:
- [0, 1, 0]

p:
- [0, 0, 1]

N:
- [0.0318, 0.1269, 0.8413]
- [0.0320, 0.1269, 0.8411]
- [0.0319, 0.1270, 0.8411]
- [0.0317, 0.1271, 0.8412]
- [0.0322, 0.1268, 0.8410]

Oscillator 1 is controlled
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4-Star: Synchronization chart

No area of remote synchronization
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4-Chain

eps: [*]
alf: [0.008, 0.010, 0.011, 0.012]
bet: [*, -0.0010, -0.0011, -0.0012]
Ku: [0.08]
u:
- [0, 1, 0]

p:
- [0, 0, 1]

N:
- [0.0318, 0.1269, 0.8413]
- [0.0320, 0.1269, 0.8411]
- [0.0319, 0.1270, 0.8411]
- [0.0317, 0.1271, 0.8412]

Oscillator 1 is controlled
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4-Chain: Synchronization chart

52



4-Chain: (a) Asymmetric remote synchronization

λ1−6 = 0, λ7−12 < 0,
p12,13,14 = 0.51,
p23,24,34 = 1

2-Torus: Remote

synchronization

Small amplitude of the

center and high

frequency
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4-Chain: Asymmetric remote synchronization

Oscillators 2, 3, and 4 get synchronized
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Outline

• Coupling via magnetic fields allows building various network structures

• The model is closely related to a physical system and have very rich

dynamics. Interesting to analyze and classify its regimes

• When the remote synchronization occurs the frequency of the central

oscillator is at least one order higher then the synchronization

frequency of the peripherals. Its amplitude is at least two times

smaller.

• Asymmetric remote synchronization is observed in a chain of four

oscillators when the middle oscillator is controlled

• Since frequency of the central oscillator is very sensitive to the current

through it, is can be use for control the whole network regime

• Increasing number of rays result in vanishing of the remote

synchronization
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Outline

• Synchronization effects can potentially be useful for development new

spintronic devices
• Remote synchronization and its control: switching device. Current through

the hub is input, average of ray-oscillators is output. High output if rays are

synchronized and low if not
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