
ISSN 1560-3547, Regular and Chaotic Dynamics, 0000, Vol. 00, No. 0, pp. 1–15. © RCD Editorial Office, 2016.

Synchronization and bistability of two uniaxial spin transfer
oscillators with field coupling

Pavel V. Kuptsov1*

1Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
Zelenaya 38, Saratov, 410019, Russia

Received July 21, 2022; revised Month XX, 20XX; accepted Month XX, 20XX

Abstract—Spin transfer oscillator is a nanoscale device demonstrating self-sustained precession
of its magnetization vector whose length is preserved. Thus the phase space of this dynamical
system is limited by a three-dimensional sphere. Generic oscillator is described by Landau-
Lifshitz-Gilbert-Slonczewski equation, and we consider a particular case of a uniaxial symmetry
when the equation yet experimentally relevant is reduced to a dramatically simple form.
Established regime of a single oscillator is a purely sinusoidal limit cycle coinciding with a
circle of sphere latitude (assuming that points where the symmetry axis passes through the
sphere are the poles). On the limit cycle the governing equations become linear with respect
to two orthogonal to the axis oscillating components of the magnetization vector while the
third one along the axis remains constant. In this paper we analyze how this effective linearity
manifests itself when two such oscillators are mutually coupled via their magnetic fields. Using
phase approximation approach we reveal that the system can demonstrate bistability between
synchronized and non-scrutinized oscillations. For the synchronized one the Adler equation is
derived, and the estimates for the boundaries of the bistability area are obtained. The two
dimensional slices of basins of attraction of the two coexisting solutions are considered. They
are found to be embedded into each other forming a series of parallel stripes. Charts of regimes
and Lyapunov exponents charts are computed numerically. Due to the effective linearity the
overall structure of the charts is very simple; no higher order synchronization tongues except
the main one are observed.
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1. INTRODUCTION

Spin transfer oscillator is a nanoscale device that demonstrates self-sustained oscillations due to
the spin-transfer-torque effect from a current with spin polarization that it acquires when passing
through a permanent magnet. The angular momentum carried by this current exerts a torque on
the magnetization vector of a nanomagnet that results in the magnetization vector precession.
The simple configuration of the spin transfer nano-oscillator is shown in Fig. 1. It consist of two
ferromagnetic layers separated by a non-magnetic spacer. The lower “fixed” layer is relatively
thick so that its magnetization ~p remains constant. The upper one is thin and thus “free”: its

magnetization ~m can be changed. Downward current density ~j corresponds to the upward electron
flow that passes the fixed layer first acquiring spin polarization. Then the flow comes to the free
layer and excited its magnetization ~m oscillations due to the spin-transfer-torque effect. Also an

external magnetic field ~hext can be applied. More details of physical implementation of this device
can be found in Refs. [1, 2].

First theoretical description of how to modify a magnetization of nanomagnets via the spin-
transfer-torque effect from a spin-polarized current was suggested by Slonczewski [3] and Berger [4]
in 1996. This is based on the Landau-Lifshitz-Gilbert equation that describes magnetization
dynamics in ferromagnets in the presences of precession damping. Spin-transfer-torque effect is
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Fig. 1. Spin transfer nano-oscillator. Fixed layer is a thick ferromagnet with permanent magnetization ~p. Free
layer is a relatively thin ferromagnet whose magnetization can easily be changed. Spacer is non-magnetic layer

made of insulator or non-magnetic metal. Current density vector ~j is downward so that the upward electron
flow passes the fixed layer first acquiring there the spin polarization and then excites oscillating magnetization

~m of the free layer due to spin-transfer-torque effect. Also an external magnetic field ~hext can be applied.

taken into account by adding a term that is now known as Slonczewski spin-transfer torque [3].
The resulting Landau-Lifshitz-Gilbert-Slonczewski in the dimensionless form reads [1]

~̇m− α~m× ~̇m = −~m× ~heff +
β

1 + cp(~m · ~p)
~m× (~m× ~p). (1.1)

Here “·” and “×” denote dot and cross products, respectively, ~m is a unit vector representing
oscillating magnetization in the free layer, ~p is also a unit vector indicating constant magnetization
direction in the fixed layer, α is a parameter controlling the Gilbert damping of the spin precession,

β is proportional to the current density j. The effective magnetic field ~heff is the sum of the external,
demagnetizing and anisotropy fields (see [1, 5] for more details). Accepting a physically reasonable
assumption that the free layer is a flat ellipsoid, and that the crystal anisotropy is uniaxial in
character, with the anisotropy axis parallel to one of the principal axes of the ellipsoid, see book [1]
as well as many other publications, e.g. [6–10], where this assumption is utilized, one can write the
effective field as

~heff = ~hext −D~m, (1.2)

where D is a diagonal anisotropy tensor and ~hext is the external field. Coefficient cp in Eq. (1.1)
depends on physical properties of the considered nano-devices as well as on the degree of the spin
polarization of the current. It may attain values in the interval −1 < cp < 1 [1]. Often in theoretical
studies it is assumed that cp = 0, see e.g. [6–10]. In what follows we will also accept this assumption.

Straightforward vector algebra shows that ~̇m · ~m = 0. It means that an arbitrary initial norm
of ~m will be preserved in time. Since Eq. (1.1) is obtained after normalization of the free layer
magnetization by its saturation value [1] the initial vector ~m(t = 0) will always be taken of the unit
norm so that ‖~m(t)‖ = 1 for any t.

Since the generation of spin transfer oscillators was observed experimentally [11, 12] a lot of
attention has been attracted to a collective behavior of the coupled oscillators. The coupling between
spin transfer oscillators is usually introduced either through common current or via magneto-dipolar
field. Coupling via common current means that the devices are connected in parallel or in series.
Due to giant magnetoresistance effect their resistance oscillates along with the magnetization. It
results in the current variation that in turn influences back the oscillations [6, 7, 9, 10].

In this paper we consider the second type of coupling when the magnetic field of one oscillator
influences another oscillator and vice versa. Such sort of coupling is implemented experimentally [13]
as well as theoretically [14, 15]. In paper [16] amplitude equation is derived for the coupled spin-
transfer oscillators and the field coupling is also considered.

The main point of interest in studying of coupled spin transfer oscillators are phase locking by
external forcing and mutual synchronization if two or more oscillators are coupled. These effects
are known to be typical for systems with self-sustained oscillations [17]. Besides the fundamental
interest, synchronization of spin transfer oscillators is important for practical applications since a
single oscillator has rather weak output power [18].
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UNIAXIAL SPIN TRANSFER OSCILLATORS WITH FIELD COUPLING 3

Papers [6, 7] analyze synchronization of an array of spin transfer oscillators coupled via common
current and describe multistability when non-synchronous regimes coexist with fully synchronized
oscillations. As a result this complete synchronization is not always develops from random initial
state. In many cases nontrivial clustering is observed including quasiperiodic and chaotic states. In
more detail the complex clustering is analyzed in [9]. Various regimes of different level of complexity,
including chimeras, are discussed. Paper [10] demonstrates that the lack of full synchronization of
the spin transfer oscillators can be a result of proximity to the homoclinicity. A noise added to a
system in this situation can suppress precession of all oscillators.

In this paper we consider particular form of a spin transfer oscillator when it has uniaxial
symmetry. This case yet practically relevant is described by dramatically simpler equations as
compared to the generic form (1.1). Two such oscillators coupled via magnetic fields are found to
have no higher resonances in their parameter space except the main one were the frequencies ratio
is 1 : 1. Thereby the parameter space has a very simple structure: there are areas of two types,
one for fully synchronized regime and another for non-synchronized oscillations. Similarly to the
case reported for common current coupling [6, 7] the bistability is observed. For a certain range of
coupling parameter the two solutions coexist, the synchronized and non-synchronized ones. Their
basins of attraction in the phase space, as observed on the two dimensional slices, are embedded
into each other: the slices consist of sufficiently thin parallel stripes. Small variation of the initial
conditions can result in regime switch from synchronization to non-synchronized oscillations.

2. SINGLE OSCILLATOR WITH UNIAXIAL SYMMETRY

We are going to consider practically important but yet simple particular case of the uniaxial
symmetry around z-axis [1]:

~heff = hz~ez −mz~ez, ~p = ~ez, (2.1)

where the diagonal elements of D are reduced to (0, 0, 1) and hz is the only nonzero component of

the external field ~hext. In this case Eq. (1.1) takes the form:

(1 + α2)ṁx =mzAmx +Bmy,

(1 + α2)ṁy =−Bmx +mzAmy,

(1 + α2)ṁz =A(m2
z − 1),

(2.2)

A = (mz − hz + β/α)α, B = mz − hz − βα, (2.3)

where mx, my, mz are components of a vector ~m. This system has three control parameters:
α is responsible for precession damping and depends on the oscillator material properties, β is
proportional to the current density that flows through the oscillator and hz is an externally applied
magnetic field.

Dynamics of the uniaxial oscillator (2.2) is considered in detail in [1]. We discuss it only in brief.
Equations (2.2) are split into two subsystems since mz does not depend on mx and my. Equation
for mz has three fixed points: mz = ±1 and mz = hz − β/α, and only one of them can be stable
as follows from their linear stability analysis [1]. Solutions corresponding to mz = ±1 imply that
mx = my = 0 and thus are non-oscillatory. Conditions of their stability are

mz =− 1 at hz − β/α <− 1,

mz =1 at hz − β/α >1.
(2.4)

The oscillatory solution corresponds to the third fixed point:

mz =hz − β/α at − 1 < hz − β/α < 1. (2.5)

When mz approaches one of the fixed points (2.4) or (2.5) it varies slowly so that we can neglect
its variation in equations for mx and my and solve them as follows:

mx = remzAt cosBt, my = −remzAt sinBt, (2.6)

where r depends on mz according to the condition m2
x +m2

y +m2
z = 1. When either mz = 1 or

mz = −1 is stable, see Eq. (2.4), the exponent is negative, mzA < 0, and mx and my decay to
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zero while rotating around z axis. These fixed points are stable focuses. When mz = hz − β/α is
stable, see Eq. (2.5), the exponent mzA is positive near mz = ±1 so that these fixed points are now
unstable focuses. The exponent vanishes as mz approaches hz − β/α. As a result at this point the
stationary oscillatory solution is

mx =
√

1− a2 cos(ωt+ f), my =
√

1− a2 sin(ωt+ f), mz = a, (2.7)

where f is a constant that depends on the initial conditions and the eigenfrequency ω and the
stationary amplitude a of the oscillator are

ω = β/α, (2.8)

a = hz − β/α. (2.9)

It should be noted that Eq. (2.7) is an exact stationary solution of the uniaxial oscillator (2.2).
This solution is pure sinusoidal, without harmonics, and oscillating subsystem of Eq. (2.2) is linear
with respect to mx and my. It means that when this system is forced periodically or interacts with
another oscillating system no higher order resonances are possible at least when the interaction is
not very strong. This is due to the fact that the perturbation transfer mechanism between harmonics
occurs via nonlinearity and this is effectively absent. More complicated regimes can be expected, if
any, only when the interaction produces an essential perturbation to mz.

3. FIELD COUPLING

We will consider oscillators coupled via magnetic fields in dipole approximation. In this case the
field is assumed to be proportional to the magnetization of the oscillators and the coupling term
for the nth oscillator is introduced as a correction to the effective field (c.f. Eq. (1.2)):

~heff,n = ~hext −D~mn + ε
N∑

j=1,j 6=n

an,j ~mj . (3.1)

Here ~mj is magnetization of the jth oscillator in an ensemble and ε is the coupling strength.
Coefficients an,j ∈ [0, 1] determine the structure of couplings.

Assuming the effective filed to be given by Eq. (3.1) we can write the Landau-Lifshitz-Gilbert-
Slonczewski equations for a network of spin-transfer oscillators as follows (as already mentioned
above cp = 0):

~̇mn − α~mn × ~̇mn = −~mn × ~heff,n + βn ~mn × (~mn × ~p). (3.2)

Coefficients an,j in Eq. (3.1) form an adjacency matrix of the oscillator network. Since ~heff,n

appears in Eq. (3.2) as a part of the cross product with ~mn the diagonal elements an,n vanish due
to the identity ~mn × ~mn = 0. Values of an,j depend on the decay rate of the magnetic field between
oscillators. For example a dipole field falls off as the inverse cube of the distance [19]. Since the
filed propagates as an electromagnetic wave, filling the area between oscillators with an absorbing
medium one can obtain an exponential decay. Thus selecting the oscillator configuration one needs
to take into account their geometrical locations. Moreover due to sufficiently fast falling of the fields
it is natural to assume that the coupling strength ε is rather small.

Similarly to the single oscillator (1.1) each oscillator vector ~mn in the network (3.2) preserves

its length, ‖~mn(t)‖ = 1. This can be checked directly by computing the dot product ~̇mn · ~mn that
remains zero for any t.
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4. TWO COUPLED OSCILLATORS. PHASE APPROXIMATION ANALYSIS

Consider two oscillators coupled according to the scheme discussed in Sec. 3. Equations for the
first one reads

(1 + α2)ṁ1,x =m1,zA1m1,x +B1m1,y+

ε {α[m2,x − (~m1 · ~m2)m1,x]−m1,ym2,z +m2,ym1,z} ,
(1 + α2)ṁ1,y =−B1m1,x +m1,zA1m1,y+

ε {α[m2,y − (~m1 · ~m2)m1,y] +m1,xm2,z −m2,xm1,z} ,
(1 + α2)ṁ1,z =A1(m2

1,z − 1)+

ε {α[m2,z − (~m1 · ~m2)m1,z]−m1,xm2,y +m2,xm1,y} ,

(4.1)

A1 = (m1,z − hz + β1/α)α, B1 = m1,z − hz − β1α. (4.2)

Equations for the second oscillator are obtained by the index exchange 1↔ 2. The full equations
set for two oscillators have five control parameters. We assume that the damping α, the magnetic
field hz and the coupling strength ε are the same for both oscillators and they have different current
densities that are incorporated into β1 and β2, respectively.

These equations can be rewritten via spherical coordinates

m1,2,x = sin θ1,2 cosφ1,2, m1,2,y = sin θ1,2 sinφ1,2, m1,2,z = cos θ1,2. (4.3)

Since oscillations occur basically in xy-plane variables φ1,2 play the role of phases and θ1,2

correspond to the amplitudes. Each oscillator is symmetric with respect to rotation around z axis.
Thus the equations in spherical coordinates can be written with respect to the phase difference
ψ = φ1 − φ2 and the amplitudes θ1 and θ2:

(1 + α2)ψ̇ = cos θ2 − cos θ1 + α(β1 − β2) + ε
(

cos θ2 − cos θ1

−α sinψ[csc θ1 sin θ2 + sin θ1 csc θ2] + cosψ[sin θ1 cot θ2 − cot θ1 sin θ2]
)
, (4.4a)

(1 + α2)θ̇1 =
(
α cos θ1 + β1 − αhz

)
sin θ1 + ε

(
[α cosψ cos θ1 − sinψ] sin θ2 − α sin θ1 cos θ2

)
, (4.4b)

(1 + α2)θ̇2 =
(
α cos θ2 + β2 − αhz

)
sin θ2 + ε

(
[α cosψ cos θ2 + sinψ] sin θ1 − α sin θ2 cos θ1

)
. (4.4c)

Here csc θ = 1/ sin θ and cot θ = cos θ/ sin θ denote cosecant and cotangent functions, respectively.
Equations (4.4) do not depend on particular phases φ1,2 and can be solved separately. Equations
for φ1,2 is coupled with Eqs. (4.4) in a unidirectional way and are not coupled with each other:

(α2 + 1)φ̇1 =− cos θ1 + hz + αβ1 + ε (cos θ2 − [α sinψ + cosψ cos θ1] sin θ2 csc θ1) , (4.5a)

(α2 + 1)φ̇2 =− cos θ2 + hz + αβ2 + ε (cos θ1 + [α sinψ − cosψ cos θ2] sin θ1 csc θ2) . (4.5b)

Equations (4.4) have a fixed point solution

ψ = const, θ1 = θ2 = θ = const, (4.6)

that corresponds to the regime of full synchronization of the oscillators: the phases φ1 and φ2 are
locked so that the their difference ψ remains constant and the amplitudes θ1 and θ2 coincide and
are also constant. Substituting (4.6) to Eqs. (4.4) we obtain stationary solutions for ψ and θ:

sinψ =
β1 − β2

2ε
, (4.7a)

cos θ =

(√
4ε2 − (β1 − β2)2 + 2ε− 2

)
(2αhz − β2 − β1)

α (8ε− [β1 − β2]2 − 4)
. (4.7b)

When the eigenfrequencies of the oscillators (2.8) are close to each other, i.e., (β1 − β2) is small,
Eq. (4.7b) is reduced via Taylor series expansion to the form

cos θ = hz −
β1 + β2

2α
+O

(
(β1 − β2)2

)
. (4.8)
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This is the mean value of stationary amplitudes for the uncoupled oscillators, see Eq. (2.7).

Substituting stationary solution (4.7) to the equations for phases (4.5) we obtain φ̇1 = φ̇2 = ωs,
where

ωs =
β1 + β2

2α
. (4.9)

Here ωs is a frequency of the synchronized oscillations. Observe that it is equal to the mean
frequencies of the partial oscillators, see Eq. (2.8).

Synchronized solution can be analyzed using phase approximation. When the system is not so
far from the limit cycle corresponding to the synchronous regime the amplitudes of the subsystems
are close to the amplitudes on the cycle. Thus given the equations describing the dynamics in
terms of phases and amplitudes we can substitute the amplitudes on the cycle into the equations
and consider phase dynamics only. The phase equation taking into account the first order terms in
the coupling strength is called Adler equation. It was first obtained by Adler [20] for a particular
system, and later a general method of analysis of dynamical systems that include derivation of the
phase equation was developed by Khokhlov [21, 22]. Discussion and description of this method of
analysis can be found in the book [17] and its higher order generalization is considered in [23, 24].

Adler equation for our system is derived from Eq. (4.4a) after the substitution θ1 = θ2 = θ. The
terms including θ are canceled so that the equation for ψ acquires the form

ψ̇ = δ − µ sinψ, (4.10)

where

δ =

(
α2

α2 + 1

)
β1 − β2

α
, µ =

(
α2

α2 + 1

)
2ε

α
. (4.11)

Equation (4.10) is a universal model of phase locking for a weakly interacting rotators. Parameter
µ in this equation is the coupling strength and δ is the frequency detuning (we recall that the
eigenfrequency of a single oscillator is β1,2/α, see (2.8)).

One-dimensional Eq. (4.10) has fixed points given by Eq. (4.7a). They exists when the right
hand side in Eq. (4.7a) is less then 1. When this condition is fulfilled Eq. (4.7a) gives two values for
stationary phase differences on the interval [0, 2π], one of them always stable. The later corresponds
to the synchronized solution. It exists at

ε ≥ |β1 − β2|/2. (4.12)

Now we will use phase approximation to consider an oscillatory solution of Eqs. (4.4) that
corresponds to non-synchronous oscillations of the coupled spin-transfer oscillators. Following ideas
from [17, 23, 24] we consider time dependent amplitudes θ1,2 as a power series in ε restricting
ourselves to the first order terms:

θ1(t) = θ
(0)
1 + εθ

(1)
1 (t), θ2(t) = θ

(0)
2 + εθ

(1)
2 (t). (4.13)

Here zero order terms θ
(0)
1,2 correspond to the uncoupled oscillators and thus are constant, see

Eq. (2.9).

Substituting expansion (4.13) to Eqs. (4.4b) and (4.4c) and equating terms of the same orders
in ε we obtain the zero order amplitudes as

cos θ
(0)
1 = Z1, cos θ

(0)
2 = Z2, sin θ

(0)
1 = Q1, sin θ

(0)
2 = Q2. (4.14)

where

Z1,2 = hz − β1,2/α, Q1,2 =
√

1− Z2
1,2. (4.15)

For the time dependent first order terms we derive ODEs as follows:

(α2 + 1)θ̇
(1)
1 =− αQ2

1θ
(1)
1 −Q2 sinψ + αQ2Z1 cosψ − αQ1Z2,

(α2 + 1)θ̇
(1)
2 =− αQ2

2θ
(1)
2 +Q1 sinψ + αQ1Z2 cosψ − αQ2Z1.

(4.16)
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Equations (4.16) are linear and indendent from each other. They are non-autonomous because we

now assume that the phase difference ψ depends on time. The coefficients at θ
(1)
1,2 are negative so

that there is no exponential growth and the solution can be found as

θ
(1)
1,2 = a1,2 cosψ + b1,2 sinψ + c1,2. (4.17)

Substituting it to Eqs. (4.16) and collecting terms at sinψ and cosψ we obtain equations for the
coefficients a1,2, b1,2 and c1,2. These equations include time derivatives of ψ that can be obtained
after substitution (4.13) to Eq. (4.4a) and keeping only zero order terms in ε (other terms will go

to higher order equations for θ
(n)
1,2 ):

ψ̇ = (β1 − β2)/α. (4.18)

Using this ψ̇ we can solve equations for the coefficients to obtain

a1 =
Q2[(Z2 − Z3

1 )α2 − (Z1 − Z2)]

(Z1 − Z2)2(α2 + 1)2 +Q4
1α

2
, a2 =

Q1[(Z1 − Z3
2 )α2 + (Z1 − Z2)]

(Z1 − Z2)2(α2 + 1)2 +Q4
2α

2
,

b1 =
αQ2[(Z1Z2 − 1)− Z1(Z1 − Z2)α2]

(Z1 − Z2)2(α2 + 1)2 +Q4
1α

2
, b2 =

αQ1[(Z1Z2 − 1) + Z2(Z1 − Z2)α2]

(Z1 − Z2)2(α2 + 1)2 +Q4
2α

2
,

c1 = −Z2/Q1, c2 = −Z1/Q2.

(4.19)

Now we turn to equation for ψ: substitute the expansion (4.13) to Eq. (4.4a) preserving terms

up to the first order in ε, and take into account solutions for θ
(0)
1,2 and θ

(1)
1,2, see Eqs. (4.14), (4.15),

(4.17), (4.19). The resulting equation reads:

ψ̇ = δ1 −
√
ν2

1 + µ2
1 sin(ψ + γ), (4.20)

where

δ1 =2(β1 − β2)/α,

ν1 =ε
Q2

2Z1 −Q2
1Z2 +Q1Q2(Q2a2 −Q1a1)

Q1Q2(α2 + 1)
,

µ1 =ε
α(Q2

2 +Q2
1)−Q1Q2(Q2b2 +Q1b1)

Q1Q2(α2 + 1)
,

(4.21)

and γ = arctan(ν1/µ1).

Equation (4.20) is derived using θ
(1)
1,2 that in turn are obtained with the assumption that ψ

depends on time, see Eq. (4.18). Thus Eq. (4.20) makes sense in the domain where it does not
have fixed points. Otherwise one of them will always be stable and ψ will arrive at it. It gives the
existence condition for a non-synchronous solution:

δ2
1/(ν

2
1 + µ2

1) > 1. (4.22)

To obtain this condition explicitly we substitute here (4.21) and solve it for ε. The resulting
expression is cumbersome, and below we provide its Taylor series decomposition up to the third
order in frequency detuning β1 − β2:

ε < |β1 − β2|+ 8|β1 − β2|3
α2(1− 4h2

z) + 4α(β1 + β2)hz − (β1 + β2)2 + 1

[(2αhz − β1 − β2)2 − 4α2]2
. (4.23)

One more condition for the non-synchronized solution to exist is Z2
1,2 < 1:

−1 < hz − β1,2/α < 1. (4.24)

Otherwise Q1,2 becomes imaginary, see Eq. (4.15). We note that it coincides with the condition
(2.5) that requires for each separate oscillator to have stable oscillatory solution.
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Fig. 2. Density ρ of initial points leading to the synchronized solution. In panel (a) colors encode density
values in a small vicinity of the point β1 = β2 and panel (b) shows wider ranges for β1 and ε. β2 = 0.004,
α = 0.01, hz = 0. In panel (a) a dashed yellow line ’syn’ marks the theoretical lower boundary of the area
where the synchronized solution exists, see Eq. (4.12). Dashed red line ’no syn’ marks an upper boundary for
the non-synchronized solution as estimated by Eq. (4.23). (c) Density of initial points leading to synchronized
solution vs ε. Parameters are as above except β1 that are shown in the legend.

To summarize, we have analyzed the fixed point and the oscillatory solution of Eqs. (4.4).
They correspond to synchronized and non-synchronized regimes of the considered oscillators,
respectively. The ranges in ε of their existence obtained in phase approximation are represented
by inequalities (4.12) and (4.23). It can be shown that the numerator of the term at |β1 − β2|3
in (4.23) is always positive. On substitution average amplitude Z = hz − (β1 + β2)/α instead of
(β1 + β2) the numerator is reduced to −4Z2α2 + α2 + 1. This expression is positive at Z = 0 and

becomes negative at Z =
√
α2 + 1/(2α). Since typically α ≈ 0.01 this value of the amplitude is very

large and physically irrelevant. Altogether it means that the areas of existence of the two solutions
overlap, i.e., there is a bistability of synchronous and non-synchronous oscillations.

We note that according to Eq. (4.17) θ1 and θ2 both depend on ψ, i.e., oscillate synchronously.
Thus in the regime that we call non-synchronous m1,2,x and m1,2,y components are not synchronized
since their phase difference ψ is non-stationary and m1,2,z oscillate synchronously.

5. NUMERICAL ANALYSIS

Figure 2 demonstrates numerical verification of the bistability. Color of points in the parameter
planes 2a and 2b represent the density ρ of trajectory initial points in the phase space that end up at
synchronous regime. Figure 2a is plotted for a small vicinity near the resonance point β1 = β2. Here
the deep blue color in the lower part depicts an area where only the non-synchronized solution exists.
A boundary of the bistability with the synchronized solution is marked by dark green points above
the deep blue area. Theoretical yellow dashed lines plotted in accordance with Eq. (4.12) correspond
to this numerically obtained boundary very well. The numerically obtained upper boundary of the
bistability in Fig. 2a is located on the lower edges of the white tongue-like area. The theoretical
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Fig. 3. (a,b) Sum of spans of z components Z1,2 = maxtm1,2,z − mintm1,2,z measured when trajectories are
issued from different initial points: m1,2,x = sin θ1,2 cosφ1,2, m1,2,y = sin θ1,2 sinφ1,2, m1,2,z = cos θ1,2, φ1 = 0,
φ2 = 0.3π. The sums Z1 + Z2 are normalized by the maximum value. Color gradient is employed for the
drawing, however one can see either zeros (black) or ones (gray) points that reveals only two different solutions,
like in Figs. 4 and 5, respectively. α = 0.01, β1 = 0.0046, β2 = 0.004, hz = 0. ε = 0.00045, and 0.001 for panels
(a) and (b), respectively. (c) and (d) Enlarged areas of the panels (a) and (b), respectively, highlighted there
by rectangles.

formula for this boundary (4.23) overestimates it, see the red dashed curves. The reason is that it
was obtained only for the first order approximation in ε.

Figure 2b demonstrates wide ranges of parameters. We again observe the white tongue whose
tip is located at the point β1 = β2. Within this tongue there is only synchronized solution. Colorful
areas below it and above the deep blue points at the bottom correspond to bistability. The white
area in the right part represents the situation when the non-synchronized solution does not exists
due to the violation of condition (4.24). We note that the theoretically predicted boundary coincides
with numerical one for small ε. Better estimate could be obtained using higher order decomposition
in ε.

Figure 2c demonstrates the density ρ vs the coupling strength ε. We see that when the coupling
is weak the density is zero, ρ = 0. It means that no bistability occurs. All solutions are non-
synchronous. When the coupling gets larger the density becomes nonzero. This is the range of
bistability. Within this range 0 < ρ < 0.5. Then when the density reaches the level ρ = 0.5 it jumps
up to ρ = 1. In the other words the bistability vanishes when one half of initial points in the phase
space lead to the synchronized oscillation.

Figures 3a and 3b reveal basins of attraction of the synchronized and non-synchronized solutions
of the system (4.1). As we discussed above, due to the norm preservation ‖~m1‖ = ‖~m2‖ = 1 and
because of the symmetry with respect to z axis the system can be described by the three ODEs
for θ1, θ2 and ψ = φ1 − φ2, see Eqs. (4.4). We keep initial ψ constant (the particular value does
not influence the qualitative picture) and start trajectories from points with various θ1 and θ2.
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Fig. 4. Synchronous oscillation in the system (4.1) at α = 0.01, β1 = 0.0046, β2 = 0.004 ε = 0.00045, hz = 0.
The initial values for ~m1,2 are specified by Eq. (5.1). (a) Time dependencies of m1,2,x and m1,2,z. Components
m1,x andm2,x are synchronized andm1,2,z do not oscillate and coincide atm1,2,z = cos(θ) = −0.43 as predicted

by Eq. (4.8). Black dashed line is computed as
√

1 − cos(θ)2 sin(ωst) where ωs = 0.43 is the frequency of the
synchronous oscillations according to Eq. (4.9). (b) Diagram of phases φ1,2. The line φ2 vs φ1 crosses the right
edge of the square [0, 2π] × [0, 2π] just one time and it crosses the top edge also one time. It indicates 1 : 1
synchronization. Vertical dashed line is drawn trough the point where φ2 = 0 so that the corresponding φ1,
i.e., the distance between the vertical axis and the dashed line equals to the phase difference ψ = φ1 − φ2.
Exactly as predicted by Eq. (4.7a) it is equal to 0.73.

To distinguish the resulting solutions we compute spans of z components along the trajectories,
Z1,2 = maxtm1,2,z −mintm1,2,z, and colorize points on the (θ1, θ2) plane according to the sums
Z1 + Z2 normalized by the maximum. Color bars in the panels of Fig. 3 confirm that a colorful
scheme is used. But nevertheless there are only two colors on the plots. It means that only two
solutions are observed. The synchronized solution corresponds to the black points where Z1 +Z2 = 0
since as discussed above z components do not oscillate in the synchronized regime. Another solution
is non-synchronized and regardless of the initial point it always has the same span of z components,
Z1 + Z2 = const, so that all corresponding points are painted in gray.

As one can see from Figs. 3a and 3b if θ1 > θ2 only non-synchronized solution can appear (plain
gray area) and when θ1 < θ2 the basins of the two solutions are intermittent. (In these figures
β1 > β2, and if β1 < β2 the picture is transposed.) In more detail this is represented in Fig. 3c. The
basins of synchronized (black) and non-synchronized (gray) solutions form diagonal stripes. When
coupling strengthen, see Fig. 3b and 3d, the black stripes (synchronized) become wider while the
gray ones shrink. Further increase of the coupling strength results in an abrupt switch of the whole
plane into black color, i.e., all starting points lead to the synchronized solution.

Now we consider examples of particular trajectories. Let us specify definite initial conditions for
the first and second oscillators as ~m1,2(0) = ~v1,2/‖~v1,2‖ where the vectors ~v1,2 are selected without
taking care of their normalization. Two initial conditions will be considered:

~v1 = (0.1,−0.1, 0.9), ~v2 = (−0.2, 0.2, 0.8), (5.1)

~v1 = (0.1,−0.2, 0.001), ~v2 = (−0.1, 0.3,−0.002). (5.2)

Figure 4 is plotted for the initial conditions (5.1). The numerical solution is approximated
very well by the formulas (4.8), (4.9). Components m1,z and m2,z do not oscillate and have the
same value mz = cos θ computed according to Eq. (4.8), see Fig. 4a. Components m1,2,x (as well
as the components m1,2,y that are not shown) oscillate synchronously. Black dashed sine curve
demonstrates that the synchronized m1,x and m2,x obey pure sine law with the frequency ωs, see
Eq. (4.9). Figure 4b demonstrates dependence φ2 vs. φ1. The line crosses the right edge of the
square [0, 2π]× [0, 2π] exactly one time and also it crosses the top edge one time. It means that
time dependencies φ1(t) and φ2(t) have identical slopes so that the oscillations are synchronized
1 : 1. Vertical dashed line in Fig. 4b goes through the point where φ2 = 0 so that its distance to the
origin equals to the phase shift ψ = ψ1 − φ2. Its value coincides with the one computed according
Eq. (4.7a).

Figure 5 is plotted at the same parameters as Fig. 4 but for the initial values (5.2). Unlike
the synchronous solution represented in Fig. 4 now oscillations of x and y components are not
synchronized. Figure 5a illustrates it showing oscillations of m1,x and m2,x. Since we consider here
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Fig. 5. Non-synchronous oscillations of the system (4.1) at the same parameters as in Fig. 4 but for the
initial values (5.2). (a) Time dependencies of m1,2,x. Observe different frequencies of the oscillations. (b)
Solid lines are unwrapped phases φ1,2. Crosses are plotted according to the formulas ω1,2t where ω1,2 are the
eigenfrequencies of the uncoupled oscillators, see Eq. (2.8). Coincidence of the crosses and the lines indicate
that the subsystems frequencies are very close to their eigenfrequencies. (c) Time dependence of θ1 computed
numerically and according to Eq. (4.13), (4.17). Observe high correspondence of the curves.

small coupling strength, the oscillations are very close to sinusoidal with frequencies very close the
eigenfrequencies of the uncoupled oscillators, see (2.8). Thus in Fig. 5b time dependences of the
unwrapped phases φ1,2 visually indistinguishable from straight lines. The crosses in this figure are
plotted according to the formulas ω1,2t. Components z oscillate now with a small amplitude. These
oscillations are described well by Eq. (4.13), (4.17). This is illustrated in Fig. (5)c where numerical
curve for θ1(t) is compared with the theoretical one.

Now we consider examples of parameter planes computed for the permanent initial points (5.1)
and (5.2). Two approaches will be used. The first one is based on counting passages of the phases
φ1,2 of the top and the right edges of the square [0, 2π]× [0, 2π]. The ratio of these numbers, so
called winding number, indicates the resonance, i.e., the synchronization m : n. The second is based
on computing Lyapunov exponents spectra at each point of the parameter plane. Totally the system
(4.1) has six Lyapunov exponents. But since it preserves the norms of ~m1,2 two of the them are
always zero. Presence of the positive exponent would indicate chaos, but this is not the case for
our system. Situation λ1,2 = 0 and λ3,4,5,6 < 0 indicates fixed point, λ1,2,3 = 0 and λ4,5,6 < 0 mean
periodic oscillation and configuration λ1,2,3,4 = 0 and λ5,6 < 0 is observed when the oscillations are
quasiperiodic, i.e., the subsystems 1 and 2 are not synchronized.

Figure 6 represents regimes of the system (4.1) in a close vicinity of the point β1 = β2. Figures 6a
and 6b are the regime charts where the colors indicate winding numbers. For all chart points the
same initial conditions are used: those given by (5.1) are used in Fig. 6a and Eq. (5.2) corresponds
to 6b. We observe that due to the bistability the charts have different structures. Dashed straight
lines marks theoretically predicted boundaries of the bistability area.

Figures 6c and 6d are the Lyapunov exponents charts corresponding the the regime charts above.
The initial conditions are again (5.1) and (5.2), respectively. Both regime charts and Lyapunov
exponents chart have identical structures that confirms correctness of our computations.

Only two regimes are observed, synchronous and non-synchronous whose examples are repre-
sented in Figs. 4 and 5, respectively. The parameters corresponding to these figures are marked by
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Fig. 6. Regimes of the coupled system (4.1) in a small vicinity of the point β1 = β2. β2 = 0.004, α = 0.01,
hz = 0. (a,b) Synchronization charts computed as counts of edges crossings of the square [0, 2π] × [0, 2π]
by the phase φ1,2, see the explanation of Fig. 4b. Initial values for the charts (a) and (b) are (5.1) and
(5.2), respectively. Black dashed lines mark the boundaries of bistability area as predicted theoretically, see
Eqs. (4.12) and (4.23). Black cross corresponds to Figs. 4 and 5. Labels are: “NP” — non-periodic, “1 : 1”
— synchronization. (c,d) Lyapunov exponents charts. Labels are: “P” — periodic oscillations, “2T” — two-
frequency torus.

the black cross in Figs. 6a and 6b. The synchronous oscillations are denoted as “1 : 1” in Figs. 6a and
6b and “P” in Figs. 6c and 6d. It means that we have here periodic oscillations when the oscillator
frequencies are equal. Charts for the initial condition (5.1) in Figs. 6a and 6c contains tongue-
like strictures of synchronized oscillations whose lower tips are anchored at the lower boundary of
the bistability area. This is because the synchronized solution does not exist below this line. We
note the all these tongues correspond to 1 : 1 synchronization. Non-synchronous oscillations are
denoted as “NP” in the regime charts, Figs. 6a and 6b. In actual computations it means that the
computed winding number for them includes large integers. In the Lyapunov charts these areas
exactly correspond to the areas “2T”. It means two-frequency torus, i.e., quasiperiodic regime. We
have to notice that the true quasiperiodicity in a strict mathematical sense appears only when the
frequency ratio is an irrational number. Obviously not every point in the “2T” areas fulfills this
condition. For some of them the frequency ratio is actually rational and hence the oscillations are
actually periodic. However the period is very large and the oscillations are indistinguishable from
the quasiperiodic ones in numerical simulations without special efforts.

The characteristic feature of the charts in Fig. 6 is their simplicity. Typically on the plane of
frequency detuning vs coupling strength there is a structure of tongues anchored at the points
where the frequencies ratio is rational, like for example 1 : 2, 1 : 3, or 2 : 3. These tongues emerge
due to the effect of phase locking and are usually called Arnold tongues [25]. In our case however
the phase locking only occurs at 1 : 1. No phase locking of higher harmonics is observed. As we
already noticed above this is due to the absence of terms nonlinear in mx and my components in
equations for a single oscillator, see Eq. (2.2).
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Fig. 7. Same as Fig. 6 for wider ranges of β1 and ε. In panels (c) and (d) black thin areas labeled as “NS”
indicate threshold of Neimark-Sacker bifurcation.

Figure 7 demonstrates the charts for wider parameter ranges. Still no complicated structure of
Arnold’s tongues is observed here. One can find only two regimes describes above. Those tongue-like
areas in Figs. 6a and 6c of synchronous oscillations anchored at the lower boundary of the bistability
area are developed in Fig. 7a and 7c into patterns that looks like papillary lines. These patterns
appear due to the bistability. All chart points are computed for the fixed initial conditions (5.1).
When parameter values varies while scanning the chart this initial point falls either to the basin of
the synchronous of non-synchronous solution. Thus the pattern appears.

To clarify it better Fig. 8 demonstrates dependence of the three nontrivial Lyapunov exponents
λ4,5,6 vs β1. (We remind that due to preserving the amplitudes ‖~m1‖ = ‖~m2‖ = 1 two of six
exponents are always zero, and one more is zero since the system (4.1) is autonomous.) These curves
correspond to moving along the horizontal line along the charts in Fig.7 at ε = 0.01. Figure 8a is
computed when trajectories are started from the initial point (5.1). Jumps of the curves in the right
part of the figure correspond to papillary patterns in Fig. 7. One sees that the jumps can be treated
as switching between two smooth curves. To reveal these curves explicitly we plot Fig. 8b in the
following way. The leftmost point is computed for the initial conditions (5.1) and all subsequent
ones when moving to the right are computed when a trajectory start from the previous trajectory
end point. One observes the transition to a synchronous periodic regime when λ4 becomes negative
and then this solution undergoes no transformations. The exponents λ4 and λ5 coincide in this area
due to the full synchronization of the oscillations: both their frequencies and amplitudes are the
same, see the example in Fig. 4. The second solution is shown in Fig. 8c. No inheritance is used
here, all trajectories start from the initial condition (5.2). This solution undergoes transition to
the synchronization in the left part of the curves that corresponds to the synchronization tongue
in Fig. 7. Moreover near the point β1/α = 1 one observes a scenarios typical for Neimark-Sacker
bifurcation [26, 27]. While moving from right to left one observes first a periodic solution. For this
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Fig. 8. Lyapunov exponents λ4,5,6 vs β1. All parameters are as in Fig. 6, ε = 0.01. (a) Initial conditions (5.1).
(b) Initial conditions (5.1) for the leftmost point, then inheritance of the initial conditions from left to right.
(c) Initial conditions (5.2).

solution λ4 = λ5 and both of them negative. Then they approach zero and then only λ5 becomes
negative again. In Figs. 7c and 7d the line of this bifurcation is highlighted with black color.

6. CONCLUSION

The spin transfer oscillator model is three-dimensional and describes precession of a magne-
tization vector. The length of this vector remains constant so that the dynamics occurs on a
sphere and thus is effectively two-dimensional. Generic spin transfer nano-oscillator is described by
Landau-Lifshitz-Gilbert-Slonczewski equation that has sufficiently complicated form. In this paper
we consider its particular case when the oscillator design is symmetric with respect to z axis. In
this case the governing equations are simplified dramatically but nevertheless the system remains
physically relevant. When the oscillator is uniaxial the established oscillations occur along a circle
of latitude parallel to x-y plane while z component remains constant. Its interesting feature is that
when on the limit cycle the governing equations are linear with respect to oscillating components x
and y. For a single oscillator it means that oscillations are pure sinusoidal without higher harmonics.

In this paper we analyze how this effective linearity manifests itself when two such oscillators
are coupled via magnetic field. Using phase approximation approach we reveal that the system can
demonstrate bistability between synchronized and non-scrutinized oscillations. For the synchronized
one the Adler equation is derived, and the estimates for the boundaries of the bistability area are
obtained. The basins of attraction of the two coexisting solutions are analyzed numerically. Their
two dimensional slices consist of sufficiently thin parallel stripes so that a small variation of the
initial conditions may result in the switch between synchronized to non-synchronized oscillations.

Charts of regimes and Lyapunov exponents charts are computed numerically. The parameters
space of this system has very simple structure. Due to the mentioned effective linearity any higher
resonances are absent. Only synchronization with 1 : 1 frequency ratio is observed while any other
phase locking with a winding number m : n, m > 1 and/or n > 1, never appears.
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