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Fig. 1. A system of two Froude pen-

dulums: the motion of one and the 

other pendulum is decelerated alter-

nately by attaching a brake shoe pro-

viding suppression of the self-

oscillations 

Uniformly hyperbolic attractors are cha-

racterized by roughness, or structural stabili-

ty, by virtue of which the generated chaos 

retains its features under small variations of 

the system parameters. Obviously, this prop-

erty is desirable for any plausible application 

of chaos. From the point of view of clarity, 

among possible examples of hyperbolic 

chaos we should outline systems of mechan-

ical nature as they are easily perceived and 

interpreted in a frame of our everyday expe-

rience [1]. Here we propose a mechanical 

system based on two Froude pendulums 

placed on a common shaft rotating at a con-

stant angular velocity undergoing alternate 

brake by periodic application of frictional 

forces (Fig. 1). The pendulums are weakly 

connected with each other by viscous friction. Denoting the angular coordinate of the 

first and the second pendulum as x and y, we write down the equations 
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(1) 

Parameters are assigned as follows: 
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To explain the functioning of the system, let's start with a situation when one 

pendulum exhibits self-oscillation, and the second is braked. The parameters are cho-
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sen in such way that at the end of the previous stage, the basic frequency of the devel-

oped self-oscillatory mode is half of frequency of small oscillations. Therefore, when 

the brake of the second pendulum is switched off, it will begin to swing in a resonant 

manner due to the action of the second harmonic from the first pendulum, and the 

phase of the oscillations that arise will correspond to the doubled phase of the first 

pendulum. As a result, when the second pendulum approaches the sustained self-

oscillatory state, its phase appears to be doubled in comparison with the initial phase 

of the first pendulum. Further, the first pendulum undergoes braking, and at the end of 

this stage, its oscillations will be stimulated by the second harmonic from the second 

pendulum, and so on. 

Fig. 2 shows a diagram for the phases determined at the end parts of successive 

stages of excitation of one of the pendulums, obtained in numerical calculations for a 

sufficiently large number of the modulation periods. As can be seen, the mapping for 

the phase in the topological sense is a quadruple expanding circle map. As volume 

contraction takes place along the remaining directions in the state space of the system, 

such transformation of the phases correspond to occurrence of the Smale-Williams 

solenoid as attractor of the Poincaré map. 

 
Fig. 2. A diagram illustrating transformation of the phases in successive stages of activity of 

one of the pendulums 

According to calculations, the Lyapunov exponents for the attractor of the 

Poincaré map are 5.41,9.18,8.11,30.1 4321  . The presence of a 

positive exponent indicates chaotic nature of the dynamics. Its value is close to a con-

stant equal to ln 4=1.386, which agrees with the approximate description of the phase 

variable by the expanding circle map. An estimate of the Kaplan – Yorke dimension 

gives 11.1||/1 21 D . 
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The hyperbolicity of the chaotic attractor was tested with the help of criterion 

based on analysis of angles of intersection of stable and unstable invariant subspaces 

of small perturbation vectors with verification of the absence of tangencies between 

these subspaces. 

Fig. 3 shows the Lyapunov exponents versus parameter a. As can be seen, in a 

neighborhood of the point corresponding to (2) there is a region where the positive 

Lyapunov exponent remains close to ln 4 and, as can be verified, correspondence in 

the topological sense with the Bernoulli map for the iteration diagrams for the phases 

takes place. Appearance of significant deviations of the Lyapunov exponent from ln 4, 

including drops to negative values ("windows of regularity") indicates violation of the 

hyperbolicity. In accordance with the expected structural stability, the same type of 

chaotic attractor should persist under variation of system parameters in some region, 

and this is indeed the case.  

 

Fig. 3. Graph for the largest Lyapunov exponent of the Poincaré map versus the parameter a. 

An arrow indicates situation corresponding to the Smale-Williams attractor with parameters (2) 
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