
 65 

Self-acceleration of Chaplygin sleigh 

 

Sergey P. Kuznetsov
 1
, Ivan A. Bizyaev

 1
, and Alexey V. Borisov

 1
 

1 
Udmurt State University, Izhevsk, Russia 

 

A recognized paradigmatic model in non-holonomic mechanics is the Chap-

lygin sleigh, that is a platform moving on a horizontal plane with a constraint that 

translational velocity at some point is oriented always along a direction fixed rela-

tive to the platform. This non-holonomic constraint can be arranged with the help 

of a knife-edge fixed on the sleigh, or with a wheel pair. 

In a frame of robotics, it is of fundamental importance to consider possibili-

ties of self-acceleration of the sleigh caused by motions of internal masses. 

The present report is devoted to a study of the Chaplygin sleigh motions 

provided by oscillations of a single internal mass. We suppose that the attached 

moving particle of relative mass  performs a periodic motion orthogonal to the 

direction of the knife-edge at distance s from it, around a point located on a straight 

line connecting the constraint location and the center of mass of the platform [1]. 

Normalized equations for the generalized momenta p and q for the translational 

and rotational motions of the platform are  
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being supplemented by expressions of the generalized velocities via the momenta 
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Here a is a distance from the constraint location point to the center of mass of the 

platform,  is amplitude of the particle oscillations, 1,3 are coefficients of friction 

for the translational and rotational motions, saaD  , 
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0 asaIJ  , and I0 is the normalized moment of inertia of the plat-

form.  

Being given some values of nn qp ,  at τ=2πn, one can solve numerically 

Eqs.(7) to obtain 
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that defines the two-dimensional stroboscopic Poincaré map.  

Equations (1) and (2) and the map (3), respectively, in continuous and dis-

crete time, define the reduced system, which can be considered independently of 
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the other variables (coordinates in the laboratory frame and the angle of rotation of 

the platform), which obey the equations 

  ,sin,cos uyux    (4) 

We distinguish two mechanisms of the sleigh self-acceleration. One mechan-

ism, observed with small oscillations of the internal mass, leads to a regular unidi-

rectional motion. Another mechanism is effect of parametric instability observed 

when the moving internal mass is of value comparable with the mass of the plat-

form; it leads to oscillatory motions of the sleigh. 

To consider the first mechanism, we write down an equation averaged over a 

period of particle oscillations neglecting terms of order 
2
. It reads 
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In the absence of friction unbounded acceleration takes place under conditions 
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In this case, we get const)(22
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asymptotically follows the power law t
1/3

, and the same is true for the translational 

velocity of the sleigh.  

In the presence of friction the growth of the momentum appears to be bounded 

on some level depending on the friction coefficient. Computations show a remark-

ably good agreement between the description with (5) and the results of numerical 

simulation using (1). 

To consider the second mechanism we remark, first of all, that at D=0 the equ-

ations (1) become a set of linear equations with periodic coefficients, similar to 

those studied in theory of parametric oscillations, like the Mathieu equation. Vary-

ing parameters, one can observe zones of parametric instability. There the solutions 

of (1) manifest oscillations of growing amplitude as illustrated in Fig.1a. It is un-

bounded because of linear nature of the equations in this case.  

If the line of the moving mass oscillations is shifted from the center of mass, 

the equations become nonlinear, and it leads to saturation of the parametric insta-

bility. In such a case the trajectory in the state space of the reduced equations 

evolves to attractor, which may be regular or chaotic; the last is the case illustrated 
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in Fig.1b. In laboratory frame it corresponds to a random-like walk as illustrated in 

Fig.1c. Such a motion gives rise to the Rayleigh distribution for distances passed 

for a fixed long time interval and to uniform distribution for the azimuth angles.  

The existence of chaotic attractors exhibited by the reduced equations of the 

Chaplygin sleigh with moving internal mass makes it possible to apply chaos con-

trol technique for the sleigh motion using small variations of characteristics of the 

oscillations of the internal mass because of sensitivity of chaotic orbits to small 

perturbations. 

 

Fig.1. Unbounded acceleration of the sleigh (а) and bounded acceleration where the trajectory 

approaches a chaotic attractor (b) accompanied by random-like walk in the laboratory frame (c). 

Parameters are a=0, 1,1.0,35.0,85.0,15.0 310 I  
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