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We indicate a possibility of implementing hyperbolic chaos using a Froude pendulum able to
produce self-oscillations due to the suspension on a shaft rotating at constant angular velocity,
in presence of time-delay feedback and of periodic braking by application of additional frictional
force. We formulate a mathematical model and carry out its numerical research. In the parameter
space we reveal areas of chaotic and regular dynamics using analysis of Lyapunov exponents
and some other diagnostic tools. It is shown that there are regions in the parameter space
where the Poincaré stroboscopic map has an attractor, which is a kind of Smale – Williams
solenoid embedded in the infinite-dimensional state space. We confirm the hyperbolicity of the
attractor by numerical calculations including analysis of angles of intersections of stable and
unstable invariant subspaces of vectors of small perturbations for trajectories on the attractor
and verifying absence of tangencies between these subspaces.

Keywords : chaos, hyperbolicity, Smale – Williams solenoid, Froude pendulum, time delay, self-
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Introduction

In this paper we propose a new example of a non-autonomous mechanical system, manifesting chaotic
dynamics associated with the Smale – Williams solenoid, which refer to the category of structurally stable
hyperbolic attractors [Smale, 1967; Anosov et al., 1995; Katok & Hasselblatt, 1995; Shilnikov, 1997].

The considered system is based on the Froude pendulum, known as a classic example of self-oscillations,
which take place due to suspension of the pendulum on a shaft rotating at constant angular velocity
[Rayleigh & Lindsay, 1945; Strelkov et al., 1933; Rabinovich & Trubetskov, 2012; Landa, 2013; Dai &
Singh, 1998; Cao et al., 2004]. We consider the Froude pendulum, supplemented by the time-delay feedback
and by periodic braking caused by application of additional friction force.

A characteristic feature of pendulum systems is that they are characterized by a particular non-
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linearity, given by the sine function. Besides mechanics, systems with such nonlinearity occur in other
areas of physics as well. For example, in electronics, these are Josephson junctions [Likharev, 1986] and
phase-locked loop devices [Best, 2007]. A generalization to the case of distributed systems with such non-
linearity is the famous sine-Gordon equation, which is being studied intensively in the context of numerous
diverse tasks [Cuevas-Maraver et al., 2014]. In relation to all these problems, considerations of analogs
built on the base of the mechanical object, the pendulum, are very productive for understanding complex
dynamical behaviors, since they appeal to intuitively clear representations, interpretation and visualization
obvious for the mechanical systems.

Uniformly hyperbolic attractors are characterized by the property of roughness or structural stability,
which is why they persist under small variations of the system parameters [Anosov et al., 1995; Katok &
Hasselblatt, 1995; Shilnikov, 1997; Pugh & Peixoto, 2008]. This property referred to as robustness is highly
desirable for chaos applications [Banerjee et al., 1998; Elhadj & Sprott, 2011; Dmitriev et al., 2012; Gusso
et al., 2019]. As it is well known, the robust chaos contrasts with the “fragile chaos”, most often taking
place in dynamical systems, which is associated with quasi-attractors [Shilnikov, 1997]. In the latter case,
the dynamical behavior observed in numerical calculations or in experiments, although it looks chaotic,
is characterized by a presence along with the chaotic trajectories also of regular attracting sets (“sinks”)
with narrow basins of attraction in the same region of phase space, or they appear under small parameter
variations.

Design of systems with hyperbolic attractors requires special efforts, and until recently, well-known
examples were limited to mathematical constructions. One such example is the Smale – Williams solenoid
[Smale, 1967; Anosov et al., 1995; Katok & Hasselblatt, 1995; Shilnikov, 1997; Kuznetsov, 2011, 2012].

Let in the phase space of some abstract dynamical system for a certain time interval a region in the
form of torus filled with points representing instantaneous states, undergoes stretching in the longitudinal
direction twice, and strong transverse compression, and folds into a loop placed inside the original torus, as
shown in Fig. 1. At each iteration, the volume of the object decreases, and the number of coils doubles. The
limit object is solenoid, which has an infinite number of coils and possesses Cantor structure in transversal
cross section. The essential point is that one of the dynamical variables, the angular coordinate ϕ, undergoes
in one step of the construction a transformation of such topological nature that one round of the full circle
for the pre-image corresponds to a double round for the image. The dynamics of individual representative
points that evolve in accordance with this rule (it is called the Bernoulli map) is chaotic. Although the
described scheme appeals for clarity to the three-dimensional state space, this moment is not of principal
significance, and attractors of the same type can occur in state spaces of higher dimensions as well.

Fig. 1. (a) Transformation of a region in the form of torus in one evolution step in time and a limit object, the solenoid
attractor. (b) A plot of the angular coordinate for a point on the attractor at time step m as a function of the previous value
at m− 1.

According to the mathematical theory [Smale, 1967; Anosov et al., 1995; Katok & Hasselblatt, 1995;
Shilnikov, 1997], a hyperbolic attractor is composed of saddle-type trajectories, at which the vectors of
infinitely small perturbations can be represented by linear combinations of vectors of contracting and
expanding invariant subspaces. The first subspace is a set of vectors whose norms decrease exponentially in
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the course of evolution in direct time, and the second is a set of vectors whose norms decrease exponentially
in reverse time. The sets of orbits approaching a given trajectory in direct or inverse time correspond,
respectively, to the stable and unstable manifolds of this trajectory. For a hyperbolic attractor, these
manifolds can intersect, but cannot have tangencies.

In Section 1, we introduce the modification of the Froude pendulum to be studied and obtain the
dynamic equations describing this system. In Section 2 we discuss some properties of the classical Froude
pendulum important for understanding the occurrence of hyperbolic chaos in the modified system. Namely,
we outline the dependence of the self-oscillation frequency on the amplitude when the parameter of activity
is varied; we outline a possibility of self-oscillations of frequency half of the natural frequency of small
oscillations. In Section 3 we explain the principle of operation of our system with time-delay feedback and
periodic braking of the pendulum, which makes it possible for the Smale – Williams solenoid attractor
to occur in the map describing the transformation of the state on successive periods of the parameter
modulation. Also we present numerical results of modeling dynamics of the system including waveforms,
pictures of attractors, and Lyapunov exponents. The key point of confirming the nature of the attractor as
the Smale – Williams solenoid, is plotting the diagrams, illustrating transformation of the angular variable
(the oscillation phase at the activity stage), where one complete circle round for a pre-image corresponds
to a double round for the image. In Section 4 we discuss how the system dynamics depend on parameters,
in particular, we present charts of regimes manifesting areas of hyperbolic and non-hyperbolic chaos, and
regions of regular regimes. In Section 5 we discuss the method and results of verifying the hyperbolicity of
attractors by means of the “angle criterion” adapted for the time-delay system, based on the analysis of the
intersection angles of stable and unstable invariant subspaces of the trajectories belonging to the attractor,
revealing the absence of tangencies of these manifolds (hyperbolicity) or the presence of the tangencies (no
hyperbolicity).

1. The system studied and main equations

A well-known example of mechanical self-oscillations is the Froude pendulum [Rayleigh & Lindsay, 1945;
Strelkov et al., 1933; Rabinovich & Trubetskov, 2012; Landa, 2013; Dai & Singh, 1998]. Let us turn to the
modified version of such a pendulum, which will be our main subject of study, see Fig.2.

Suppose we have a rod of length l, at one end of which a weight of mass m is fixed, and the other end
is attached to a sleeve placed on a shaft rotating at constant angular velocity Ω. The equation of motion
of the pendulum is

ml2ẍ+ α(t)ẋ+mglsinx = G(Ω − ẋ) +M(t), (1)

where x is the pendulum angle away from the vertical, g is the gravity acceleration constant, α is a
coefficient of viscous friction, which in our formulation of the problem will vary in time due to periodic
application of the brake pad. The moment of the force of dry friction between the shaft and the sleeve
G(ΔΩ) is assumed to decrease depending on the relative angular velocity, also we suppose application
of external force moment M(t) provided by some device introducing the time-delay feedback. As such a
device, an electromechanical controller may be used, but the simplest option (say, for an experimental
implementation) is a mechanical time-delay transmission line such as a spring of length L, which at one
end comes into contact with the pendulum with viscous friction at the point of contact, and has a free
second end (Fig.2).

Let’s derive the equations describing action of the time-delay line on the pendulum. Let ξ be coordinate
counted along the transmission line, JΔξ be the moment of inertia of the spring section of length Δξ, k/Δξ
be the stiffness coefficient of the section Δξ. The equations describing propagation of the torsion waves in
the spring transmission line have the form

J
∂ω

∂t
= −∂M

∂ξ
,

∂M

∂t
= −k

∂ω

∂ξ
, (2)

where ω(t, ξ) is the instantaneous local angular velocity of the spring element, and M(t, ξ) is local moment
of force acting on the spring element.
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Fig. 2. Froude pendulum, where self-oscillations are ensured due to rotation of the shaft on which the sleeve attached to
the pendulum is placed, and the corresponding plot of dependence of the dry friction force on the relative angular velocity.
The system is supplemented with a mechanical time-delay line (spring) and a mechanism providing alternate braking and
excitation of the oscillations.

For the speed c of the wave propagation in the spring transmission line and the constant ρ, which is
the mechanical wave impedance, we have

c =
√
kJ−1, ρ =

√
kJ, (3)

and the general solution of equations (2) is written as

M(t, ξ) = f1(t− ξ/c) + f2(t+ ξ/c),
ω(t, ξ) = ρ−1[f1(t− ξ/c)− f2(t+ ξ/c)],

(4)

where f1 and f2 are arbitrary functions.
In the presence of viscous friction at the point of contact with the pendulum, which has an instantaneous

angular velocity ẋ, we should write down M(t, 0) = κ[ẋ(t) − ω(t, 0)] at the end ξ = 0 of the transmission
line, or f1(t) + f2(t) = κẋ− κρ−1f1(t) + κρ−1f2(t), where κ is the friction coefficient. We confine ourselves
here to considering the case of no-reflection load, when κ = ρ. Further, the free boundary condition
M(t, L) = 0 at the other end of the time-delay line ξ = L is reduced to f1(t− L/c) = f2(t+ L/c), so that
f2(t) = f1(t− 2L/c). Therefore, for the friction force moment acting on the pendulum from the spring, we
obtain M(t) = −M(t, 0) = −f1(t)− f2(t), or

M(t) =
1

2
ρ[ẋ(t− 2L/c) − ẋ(t)]. (5)

As often assumed in the theoretical analysis of the Froude pendulum [Dai & Singh, 1998; Cao et al.,
2004; Landa, 2013], let’s suppose that the function G(ΔΩ) characterizing the friction between the sleeve
and the shaft is represented by decreasing function with inflection point, and the rotation speed of the
shaft is chosen corresponding to the inflection point. Then the Taylor decomposition of the function near
this point is

G(Ω − ẋ) ≈ G(Ω)−G′(Ω)ẋ− 1

6
G′′′(Ω)ẋ3 = G0 +Aẋ−Bẋ3. (6)

As a result, under the assumptions made, the equation (1) takes a form

ml2ẍ+ [α(t)−A+Bẋ2]ẋ+mglsinx = G0 +
1

2
ρ[ẋ(t− 2L/c)− ẋ(t)]. (7)

When introducing the dimensionless quantities

t′ = ω0t = t

√
g

l
, d =

α

ml2ω0
, a =

A

ml2ω0
, b =

Bω0

ml2
, μ = ω−2

0 G0, ε =
ρ

2ml2ω0
, τ =

2Lω0

c
, (8)
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we come to the equation

ẍ+ [d(t)− a+ bẋ2]ẋ+ sinx = μ+ ε[ẋ(t− τ)− ẋ], (9)

where the dot means derivative with respect to the dimensionless time. (For brevity, the prime in notation
of the dimensionless time is omitted here and later.) The coefficient d(t) in the equation will be assigned
to be zero without braking and to be a constant D > 0 when the brake pad is applied periodically for time
interval T0 with period T . Specifically, we set

d(t) =

⎧⎨
⎩

0, t < T0,
D, T0 < t < T/2,
0, T/2 < t < T,

d(t+ T ) = d(t). (10)

2. On Froude pendulum without braking and time-delay

Let us return for a while to the conventional Froude pendulum, without braking and time-delay feedback
involved. This is the case d(t) = const, ε = 0, so the problem is described by an ordinary second-order
differential equation

ẍ+ (d− a+ bẋ2)ẋ+ sinx = μ. (11)

In such a reduced system chaos is impossible, but we will discuss briefly this system in one relevant aspect,
following [Kuznetsov & Kruglov, 2019].

If a − d > 0, then in the system (11) self-oscillations arise represented on the phase plane by a limit
cycle going around the equilibrium state O, (x, ẋ) = (arcsin μ, 0). At small amplitudes, the frequency of
the self-oscillations is close to the natural oscillator frequency f = (2π)−1. With increasing a− d the limit
cycle grows in size, and the frequency f decreases. This is due to the fact that as the maximum angular
deviation of the pendulum comes closer and closer to the unstable upside down pendulum position, the
point of the saddle S (x, ẋ) = (π − arcsinμ, 0), where the motion along the phase trajectories slows down.
A further increase of the parameter leads to a transition from the oscillatory motions to periodic rotational
movements of the pendulum, which correspond to limit cycles bypassing the phase cylinder, and their
frequencies are much higher. Panel a of Fig. 3 shows limit cycles corresponding to sustained regimes of the
Froude pendulum (11) at b = 0.16, μ = 0.087 for different values of a − d, and panel b presents a plot of
the frequency of the self-oscillations versus this parameter.

Note a possibility of choosing parameters in such way that the frequency of self-oscillations becomes
equal exactly to a half of the frequency of small oscillations. For example, at μ = 0.087, b = 0.16, this takes
place at a − d = 0.360. The process of the large-amplitude relaxation oscillations contains a significant
second harmonic, so that action of the generated signal on a linear oscillator with unit natural frequency is
accompanied with its resonance buildup stimulated by the second harmonic of the self-oscillator (Fig. 3c).

In [Kuznetsov & Kruglov, 2019], this observation was used to construct a system with the Smale –
Williams attractor consisting of two Froude pendulums, which are excited turn by torn due to alternating
periodic braking, so that the parameter controlling the activity in one and other subsystem is character-
ized by presence of a plateau of the time dependence at the level corresponding to the desired value of the
frequency of the relaxation self-oscillations. In the present paper, we show that, with the same success, a
similar type of attractor can be obtained for a single pendulum with alternating excitation and suppression
of the oscillations, if we add the time-delay feedback. (A similar approach to systems based on the Bon-
hoeffer — van der Pol oscillator was developed in [Doroshenko et al., 2018; Kuznetsov & Sedova, 2019].)

3. The mechanism of appearance of hyperbolic chaos and numerical results

Let us consider again the Froude pendulum modification introduced in Section 1 with time-delay feedback
and periodic switching of linear dissipation in and off by attaching the brake pad providing damping of
the self-oscillations.

It is important to note that the system with time-delay, governed by equations (9), (10), in contrast to
the reduced system (11), is characterized by an infinite dimension of the phase space [Bellman & Cooke,
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Fig. 3. Attracting limit cycles for various parameters corresponding to sustained periodic motions of the Froude pendulum:
oscillatory A, B, C, D at a − d = 0.03, 0.12, 0.24, 0.36, with frequencies 2πf = 0.982, 0.926, 0.827, 0.50, and rotational D+,
E±, F±, at a − d = 0.36, 0.48, 0.60, with frequencies 1.201 (D+), 1.622 (E+), 1.044 (E−), 1.88 (F+), 1.66 (F−) (a). The
dependence of the frequency of self-oscillations on the parameter a− d (b). The arrow shows situation, which corresponds to
the frequency of half of the frequency of small oscillations of the pendulum. The resonant buildup of a linear oscillator under
the action of the second harmonic of the self-oscillating system according to the results of numerical integration of equations
ẍ− (a− bẋ2)ẋ+ sin x = μ, ÿ + y = εẋ with parameters a = 0.36, b = 0.16, μ = 0.087, ε = 0.06 (c).

2012; El’sgol’ts & Norkin, 1973; Farmer, 1982; Yanchuk & Giacomelli, 2017]. Indeed, in order to determine
unambiguously the subsequent evolution of the system in time with certain initial conditions, along with
the quantities x and ẋ at some instant t0, it is also necessary to set the function ẋ (t0 − τ) on the time
interval of duration τ .

Within the framework of the problem statement discussed in Section 1, this corresponds to the fact
that in addition to the instantaneous values of the deflection angle and the angular velocity of the pendulum
at the initial moment, we should take into account also an instantaneous state of the transmission line
characterized by some distribution of momentums and angular velocities of the spring coils along its length.

Our system is non-autonomous, with periodic parameter modulation, so we can use the description of
the dynamics in terms of discrete time by means of the stroboscopic Poincaré map

Xn = FT (Xn−1). (12)

Here vectors Xn denote the sets of quantities x(tn), ẋ(tn) together with functions ẋ(t− τ), t ∈ (tn− τ, tn)
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determining the state of the system at the time instants tn = nT , and should be interpreted as elements
of the infinite-dimensional state space.

In this section, the parameters of the model (9), (10) will be assigned as follows:

a = 0.36, b = 0.16, μ = 0.087, ε = 0.0003, D = 0.8, T = 250, T0 = T/4, τ = T/2. (13)

Let us explain the mechanism of the system functioning, which is responsible for appearance of the
Smale – Williams attractor in the Poincaré map. Let us start with a situation when the braking is not
applied, and the pendulum performs relaxation self-oscillations, in which, due to the mentioned selection
of the parameters the fundamental frequency is half of that for the small oscillations of the pendulum. The
signal generated at this stage is been sending to the time-delay feedback transmission line. Further, the
pendulum oscillations are damped by the application of the brake pad. When braking stops, a new stage
of the buildup of the oscillations begins, starting from the practically unexcited state of the pendulum. As
we properly select the delay time, the progress of the oscillatory process will be stimulated by resonant
action of the second harmonic of the signal received through the feedback circuit and emitted just on the
previous stage of intense oscillations. Therefore, the phase of the developing oscillations corresponds to
the doubled phase of the main component of oscillations at the prior activity stage. As a result, when the
newly arisen oscillations of the pendulum approach the sustained relaxation self-oscillations, their phase
will be doubled compared to the phase at the preceding activity stage. Further, the process is repeated
again and again. A full cycle corresponding to the modulation period T is accompanied by multiplying the
initial phase of the oscillatory process by 2, i.e. for it, a doubly expanding circle map takes place. Due to
compression in remaining directions in the state space of the map Xn = FT (Xn−1), the Smale – Williams
attractor arises.

Let us turn to illustrations of the functioning of the system basing on results of numerical simulation.
To integrate equation (9), the Runge – Kutta method of order 4 was used, adapted for the time-delay
system. The values of variables and functions at each step of the difference scheme are accumulated as an
array that contains data for the previous time interval τ . When in the process of calculations it is required
to substitute the delayed values of these quantities, this data array is accessed.

Figure 4 shows typical waveforms of the pendulum angular coordinate and velocity obtained by numer-
ical integration of equation (9) in sustained regime; it illustrates the idea of the functioning of the system
in accordance with the above mechanism. To make visible the main oscillatory process, we have shown a
relatively short time interval. Although it gives no opportunity to judge confidently about chaotic nature
of the dynamics, one can note that relative positions of the oscillation forms do not repeat themselves at
successive activity stages relative to the time intervals of the braking application.

Before turning to other illustrations that definitely indicate chaotic nature of this regime and reveal
hyperbolicity of the corresponding attractor, we need to make a notion concerning numerical evaluation of
the phases of the oscillations. In the domain of developed self-oscillations, their shape differs significantly
from the sinusoidal one; therefore, a simple calculation of the phases through arctangent of the ratio of
the variable and its derivative does not lead to satisfactory results. An alternative is using a value that
determines a time shift relative to a certain origin normalized to the characteristic period of the self-
oscillations. Let t be the moment of the termination of the braking of the pendulum, and t1 and t2 are the
preceding moments of reaching the maximums of the angular velocity ẋ of the pendulum. Then, we can
define the phase as a variable belonging to the interval [0, 1] according to the relation ϕ = t−t2

t2−t1
. In the

process of numerical modeling the system dynamics, the phase is evaluated at the end of each next stage
of activity.

Figure 5a shows a diagram for the phases obtained in numerical calculations for a sufficiently large
number of main periods. As one can see, topologically the mapping for the phases looks equivalent to the
Bernoulli map ϕn+1 = 2ϕn + const (mod 1); indeed, one passage of the full unit interval for the pre-image
corresponds to a double passage for the image.

Figure 5b shows attractor of the Poincaré stroboscopic map. It should be interpreted as a projection
of the Smale – Williams solenoid from the infinite-dimensional state space of the time-delay system on the
plane. The object looks like a closed curve, but in fact it has a thin structure of filaments (indistinguishable
because of high degree of transversal compression of the phase volume). A representative point does not
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Fig. 4. Waveforms for the pendulum deflection x(t) and the angular velocity ẋ(t) in the regime of hyperbolic chaos plotted
according to the results of numerical integration of equation (9) with parameters (7). The gray bands correspond to the time
intervals where the pendulum is subjected to the brake pad application.

move along the “curve”, but jumps at on step of evolution in such way that the angular variable follows
the chaotic map.

Fig. 5. Diagram for phases of oscillations at successive periods of activity of the oscillator in system (9) and portrait of the
attractor for the stroboscopic Poincaré map in projection on the plane of variables(x, ẋ). Parameters are assigned in accordance
with (7).

The chaotic nature of the dynamics is confirmed by forms of power density spectra, which are shown in
Fig.6. The spectra were obtained by processing time series for the deflection angle and the angular velocity
of the pendulum obtained from numerical integration of equation (9) using the method of statistical
evaluation of the spectral density of random processes [Jenkins & Watts, 1968; Sveshnikov, 2014]. Namely,
the time series is divided into sections of certain duration (it determines the inverse value of the frequency
resolution of the analysis), followed by multiplying the fragments of the time series by the window function
(for improving the quality of spectral analysis preventing the effect of widening of spectral components
caused by mismatch of signal levels at the edges of the split intervals). Next, Fourier transformation is
performed for each of the intervals, and the squares of the amplitudes of the spectral components are
averaged over the acceptable set of the intervals.

From Figure 6 it can be seen that the spectra have a continuous component, like those for random
processes. A set of discrete lines in the left parts of the graphs is due to a presence of the periodic parameter
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Fig. 6. Power spectra corresponding to the dynamical variables x and ẋ in the chaotic regime associated with the Smale –
Williams attractor and obtained by processing data of numerical integration of the equation (9). Parameters are assigned in
accordance with (7).

modulation in the system. In the considered regime, the modulation period is T = 250, so the distance
between the spectral lines is Δf = T−1 = 0.004 in correspondence with that observed on the graph.
Widened peaks in the spectra correspond to the main frequency of relaxation oscillations at the activity
stage f ≈ (4π)−1 ≈ 0.08 and to its harmonics 2f , 3f , 4f . . .

To characterize the chaotic dynamics quantitatively, we calculate the Lyapunov exponents. For time-
delay systems, a complete spectrum of Lyapunov exponents contains an infinite number of terms, although
in order to properly judge on relevant characteristics of the attractor we need a restricted number of
the largest ones. To evaluate them we use a kind of Benettin method [Benettin et al., 1980; Shimada
& Nagashima, 1979; Pikovsky & Politi, 2016], adapted for time-delay systems [Farmer, 1982; Yanchuk
& Giacomelli, 2017; Balyakin & Ryskin, 2007; Koloskova et al., 2018]. The content of the procedure is
simultaneous integration of the equation (9) together with a set of linearized variation equations

¨̃x+ [d (t)− a+ 3bẋ2] ˙̃x+ x̃ cos x = ε[ ˙̃x (t− τ )− ˙̃x], (14)

the number of which corresponds to the number of the required Lyapunov exponents.
The perturbation vectors related to a time instant nT, where T is the modulation period, are de-

termined by a set of quantities x̃(nT ), ˙̃x(nT ) and functions ẋ(t), t ∈ [nT − τ, nT ). At each period T
the resulting vectors are subjected to the Gram-Schmidt orthogonalization procedure and renormalized
so that the norms of the vectors turn out to be unit. The Lyapunov exponents are estimated as aver-
age rates of increase (decrease) of cumulative sums of logarithms of norms for perturbation vectors after
orthogonalization, but before normalization.

The calculation of the largest three Lyapunov exponents of the Poincaré map for the attractor at the
given parameters (7) yields

Λ1 = 0.650, Λ2 = −6.325, Λ3 = −7.061, ... (15)

The positive value of the first exponent indicates chaotic nature of the dynamics, and, as we can see, it is
quite close to the value ln 2 = 0.693... that corresponds to the Bernoulli map of Fig.1b. The Kaplan-Yorke
dimension estimated from the spectrum of Lyapunov exponents [Kaplan & Yorke, 1979; Farmer et al.,
1983] for this attractor is D = 1 + Λ1/|Λ2| ≈ 1.10.

4. The dependence of the dynamics on the parameters

Our consideration in the previous Section relates to a particular selected point in the parameter space,
where the hyperbolic attractor in the form of Smale – Williams solenoid takes place for the Poincaré map.
Now we are going to discuss how the dynamics depend on the parameters. It is rather difficult to get a
comprehensive picture, since the number of parameters in the model is quite large. Nevertheless, the content
presented below will illustrate several important aspects. Firstly, we will try to give a general idea about
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nature of the dynamical behavior, including its various types, regular and chaotic regimes subdivided
to oscillatory and rotational ones that is a specific of the systems with sine nonlinearity. Secondly, it
will illustrate and demonstrate to a certain extent the inherent property of structural stability, which is
expressed in the fact that the hyperbolic chaos occupies continuous regions in the parameter space. Thirdly,
it is interesting to see how the regions of hyperbolic chaos can be disposed in the parameter space and what
are possible scenarios of arising the hyperbolic chaos as we move towards these regions under parameter
variation, which may be useful for orientation in general search for situations with structurally stable chaos
in various systems of natural or technical origin.

We will use a technique of representing the numerical results of the dynamics analysis with charts
of dynamical regimes [Kuznetsov et al., 1996; Stoop et al., 2012; Doroshenko et al., 2014] . To build a
chart, two parameters are selected, which will be varied during the calculations while other parameters
are fixed. Then, the plane of parameters is scanned providing numerical integration of the dynamical
equations (9) at the grid nodes with a certain step in two parameters. For each node of the grid we produce
about 103 iterations of the Poincaré map, and a type of the dynamical regime is identified basing on the
results of the calculations. The diagnostics is executed, firstly, on the basis of the calculation of the largest
Lyapunov exponent: its positive value implies chaos; zero corresponds to quasiperiodic dynamics, and
negative values correspond to periodic movements. In the latter case, the repetition period of the system
states is determined (from 1 to 14 iterations of the Poincaré map), with some initially defined level of
allowable error. For chaotic regimes, a specially developed data processing algorithm is additionally applied,
which allows confirming or rejecting the assumption that the map for the angular variable transformation
on the modulation period belongs to the same topological class as the double expanding circle map. This
allows distinguishing regimes where chaos corresponds to the Smale – Williams solenoid1. In accordance
with the diagnostics, a corresponding pixel in the diagram is indicated by a certain color, and we pass to
analysis of the next point of the parameter plane. Note that it is reasonable to set the state obtained as a
final system state at the previous point as initial state to start the computations at the new point, which
in most cases accelerates the convergence to the sustained dynamics (“scanning with inheritance”).

As an initial step in our analysis, Fig. 7a shows a diagram on the plane of parameters (a, b) for the
conventional Froude pendulum described by equation (11) with d = 0 and μ = 0.087, where the areas
of oscillatory and rotational regimes are indicated, and the red line corresponds to the relaxation self-
oscillations at a frequency equal to a half of the frequency of small oscillations of the pendulum. In Fig.
7b on the plane of the same parameters, a chart of regimes for the system (9) is shown. We can see zones
of periodic and chaotic dynamics located both in the regions of oscillatory and of rotational movements.
Chaotic attractors in the form of a Smale – Williams solenoid in the Poincaré map take place in the
SW region, which is a strip shown in gray in the diagram. The center of this strip corresponds to the
half-frequency red line in the panel (a).

Figure 8 shows a chart of regimes on the parameter plane (ε, D), i.e. the time-delay feedback intensity
parameter versus the dissipation parameter introduced by the brake pad during the braking stages. Here-
with, the remaining parameters correspond to the situation when the period of relaxation self-oscillations
at the activity stage is exactly twice the period of small oscillations. The structure of the regions is deter-
mined by the character of the excitation transfer from one stage of activity to the next one in the course
of the system operation, as discussed in Section 3. In the central part of the chart one can see a broad area
SW, where hyperbolic chaos takes place. Exit this area down corresponds to the fact that dissipation at the
stages of breaking decreases and becomes too small to provide a sufficient degree of damping of the natural
oscillations of the pendulum after the previous activity stage, which makes a competing contribution to

1The algorithm consists in analyzing the coarsened dependence of the values of phases ϕn versus ϕn−1 obtained on successive
modulation periods, as described in the previous Section, and determined on a unit interval. The values ϕn−1 recorded for
the considered regime for N consecutive modulation periods are grouped into “boxes”, each of which occupies 1/K of the
full interval. The value of the coarsened function fk is taken as an average value exp(2πiϕn)over all ϕn−1 that fall into this
box. According to the data obtained, from k = 0 to K – 1, step by step, the phase increment

∑
arg fkin the full interval is

calculated, and it is verified is it equal 2 or not. Also, the monotony of the coarsened phase depending on k is checked. If both
of these conditions are true, the pixel on the chart is marked as referring to the situation of presence of the Smale – Williams
attractor.
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the stimulation of the oscillatory process at the new activity stage, so that the phase doubling transfer
mechanism is violated. The exit through the upper boundary of the SW region corresponds to the fact
that at the curve representing the graph for the phases, a bend is formed on one of the branches, and
then a maximum and a minimum appear, so that the monotony property is lost. (This means that when
a stretched double loop is inserted into the original toroidal region in the solenoid construction procedure,
there appears a local fold on the loop, which leads to disruption of the proper solenoid structure.) When
the parameters at the upper edge of the region SW are varied, periodic motions become possible; on the
chart one can see there a set of periodicity tongues. Visually, they look similar to the classical synchro-
nization Arnold tongues [Boyland, 1986; de Figueiredo & Malta, 1998], but the principal difference from
the classical picture is that between them we have chaotic dynamics rather than the quasiperiodicity.

Fig. 7. Regions of oscillatory and rotational motions for the reduced system (11) on the plane of parameters (a, b) with
d = 0 (a) and the chart of regimes for the system (9) on the same plane of parameters, where areas of chaos and of periodic
motions are shown. The region of hyperbolic chaos associated with the Smale – Williams attractor is shown in gray and is
marked as SW, other chaotic regimes are marked in white. The legend for periodic regimes is shown on the right, where
the periods are indicated in units of the period of the cycle of braking and activity of the pendulum. Fixed parameters are
μ = 0.087, ε = 0.0003, D = 0.8, T = 250, T0 = T/4, τ = T/2.

A characteristic feature of the “fragile chaos” is that within the corresponding areas shown in white,
local formations occur corresponding to the periodic dynamics called “shrimps” [Stoop et al., 2012] and their
“mustaches”, the filaments emanating from each shrimp, which are narrow bands of periodicity running
through the region of chaos. Their presence just indicates violation of the robustness. Such formations
are absent in the area of hyperbolic chaos SW, although when approaching its borders one can observe
appearance of local zones of regular dynamics in the form of the above mentioned tongues.

The fact that the hyperbolic chaos occupies a continuous region in the parameter space is consistent
with the theoretical concept of the inherent structural stability. Detailed consideration of the scenarios for
the destruction of hyperbolic chaos is beyond the scope of this paper; for discussion of some results in the
context of this problem, see [Isaeva et al., 2012, 2015].

Figure 9 shows the dependences of three Lyapunov exponents on parameters a and b, corresponding
to paths on the chart of Figure 5b along two lines crossing at the hyperbolic chaos point a = 36, b = 0.16,
respectively, in horizontal and vertical directions. Parameter intervals where the analysis of the properties
of the map for the phases reveals the topology corresponding to the Smale – Williams attractor, are
marked with pink background under the plot of the largest exponent. Its values in these regions are roughly
estimated from above by the value of ln2, although at some places they drop to notably smaller values. The
property of structural stability of the hyperbolic attractor is manifested in the fact that it persists in the
continuous parameter intervals, and the dependence of the Lyapunov exponent on a parameter is smooth.
In the areas of “fragile chaos”, the dependence of the Lyapunov exponent on a parameter is characterized
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Fig. 8. Chart of regimes of the system (9) on the plane ε, D, where areas of chaos and of periodic motions are shown. The
region of hyperbolic chaos associated with the Smale – Williams attractor is shown in gray and marked as SW, other chaotic
regimes are shown in white. The legend for periodic regimes is shown on the right. Fixed parameters are a = 0.36, b =
0.16, μ = 0.087, ε = 0.0003, D = 0.8, T = 250, T0 = T/4, τ = T/2.

by a strong irregularity, and dips to negative values corresponding to the so-called “periodicity windows”
that are characteristic of nonhyperbolic chaos, which on the chart of regimes correspond to the intersections
of the “shrimps” and their “mustaches”.

5. Verifying the hyperbolicity of attractors in the time-delay system. The
“criterion of angles”

One of methods for testing hyperbolicity [Lai et al., 1993; Anishchenko et al., 2000] is that for a typical
trajectory belonging to the invariant set under consideration, the equations in variations for the perturba-
tion vectors are solved first in forward time to determine the unstable subspace and then in reverse time
to determine the stable subspace. Further, for the set of points of the trajectory, the angles between these
subspaces are calculated, and the nature of the distribution of the angles is analyzed. If it is separated from
zero angles, then this indicates the hyperbolic nature of the invariant set, whereas occurrence of angles
close to zero indicates the absence of hyperbolicity. This method has shown its effectiveness in recognizing
hyperbolic and non-hyperbolic chaos in many particular systems [Kuznetsov, 2005; Kuznetsov & Seleznev,
2006; Kuznetsov & Kruglov, 2017][Kuznetsov, 2005; Kuznetsov & Seleznev, 2006; Kuznetsov & Kruglov,
2017]. For the attractor of the system of two alternately excited Froude pendulums, this method was
applied in [Kuznetsov & Kruglov, 2019].

In the case of time-delay systems, the problem is that the dimension of the phase space and, accord-
ingly, of the contracting subspace is infinite. This problem can be overcome with the help of a variant of
the method, where not vectors that belong to the contracting subspace are used to identify this subspace,
but vectors defining its orthogonal complement, the dimension of which is usually small [Kuptsov, 2012;
Kuptsov & Kuznetsov, 2016]. These vectors are obtained from the solution of the adjoint linearized equa-
tions; the method of their derivation for systems with one or several delay times was specified in [Kuptsov
& Kuznetsov, 2016, 2018].

For our system (9) the equations in variations near the reference phase trajectory can be rewritten as

˙̃x = ũ, ˙̃u = −[d (t)− a+ ε+ bẋ2] ũ− x̃ cosx+ εũ (t− τ) . (16)

The adjoint system is constructed as suggested in [Kuptsov & Kuznetsov, 2016, 2018], and is a system of
equations with deviating argument of the advanced type

˙̃y = ṽ cos x, ˙̃v = −y + [d (t)− a+ ε+ bẋ2] ṽ − εṽ (t+ τ) . (17)
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Fig. 9. Spectrum of Lyapunov exponents of model (9) depending on the parameter a at b = 0.16 (a), and depending on b at
a = 0.36 (b). The remaining parameters are μ = 0.087, ε = 0.0003, D = 0.8, T = 250, T0 = T/4, τ = T/2.

These equations are constructed so that for the vectors given by (16) and (17), the inner product, defined
as

x · y = x̃(t)ỹ(t) + ũ(t)ṽ(t) + ε

t∫
t−τ

ũ(θ)ṽ(τ + θ)dθ, (18)

remains constant in time.
In the region of parameters of our interest, the unstable subspaces of the trajectories belonging to

the attractor are one-dimensional, and the same is true for the orthogonal complement to the stable
subspaces. The procedure is to calculate first a long segment of reference trajectory of the system (9), with
simultaneous integration of the equations in variations (16), giving a set of vectors associated with positive
Lyapunov exponent and belonging to the unstable subspace. Further, in reverse time, the integration of the
adjoint system is carried out along the same trajectory. (Although in its formal record (17) it is of advanced
type, in the inverse time the solutions behave as for a retarded type system, so that troubles concerning
the mathematical nature of the advanced type equations do not arise.) At the end of the procedure, the
angles are calculated using the scalar product (14) for pairs of vectors belonging to identical points of the
reference trajectory at different times, and a histogram of their distribution is plotted.

Figure 10 illustrates the results of checking the hyperbolicity of attractors for the system (9). The
left column corresponds to the hyperbolic attractor discussed in Section 3, and the central and right
columns correspond to non-hyperbolic attractors of the oscillatory and rotational types of motions re-
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spectively, which arise with a shift in the parameter b. Lyapunov exponents for the hyperbolic attractor
were indicated in Section 3, and for the non-hyperbolic attractors they are Λ = {0.766,−9.141,−9.838}
and Λ = {0.959,−8.606,−9.485}, respectively. Their Kaplan – Yorke dimensions DKY = 1 + Λ1/|Λ2| are
approximately 1.08 and 1.10.

The top row shows stroboscopic portraits of the attractors. As seen, the left and central pictures
correspond to oscillatory type of motion, and the right one to rotational one.

The middle row shows diagrams for oscillation phases at successive modulation stages, calculated
according to the procedure explained in Section 3. As one can see, only the left diagram corresponds to the
topological type of the Bernoulli map, while diagrams for non-hyperbolic attractors clearly do not belong
to this type .

The bottom row shows histograms of the intersection angles of stable and unstable subspaces for
trajectories on the attractors. The left diagram clearly shows that the distribution is separated from zero
angles, which confirms the hyperbolic nature of the attractor of the Poincaré map. Similar results are
obtained when the parameters of the system vary in a quite wide range (SW region in Fig.7, 8), which
corresponds to the roughness property (structural stability) inherent to the hyperbolic attractor. The
central and right histograms indicate the presence of angles close to zero between vectors belonging to
stable and unstable subspaces; it indicates the non-hyperbolic nature of the attractors.

Conclusion

In this paper, occurrence of rough hyperbolic chaos associated with the Smale – Williams attractor is
established for a system based on the Froude pendulum supplemented by time-delay feedback and with
periodic externally forced alternating excitation and suppression of activity due to periodic braking of the
oscillations.

The mathematical model is formulated and its numerical research is carried out. Areas of chaotic and
regular dynamics are identified in the parameter space using analysis of periodicity and calculations of
Lyapunov exponents. It is shown that with the appropriate specification of the parameters, the attractor
of the stroboscopic Poincaré map is a Smale – Williams solenoid, the nature of which is confirmed by
checking the topological nature of the map for the angular variable, executed visually or automatically
using a specially developed algorithm. The hyperbolicity of the chaotic attractor was also confirmed using
a criterion based on the analysis of the intersection angles of stable and unstable invariant subspaces of small
perturbation vectors and checking the absence of tangencies between these subspaces. The structure of the
system parameter space was studied; in particular, charts of regimes were presented in two-dimensional
sections of the parameter space, which allowed judging on the location of the regions of hyperbolic chaos,
which occupy continuous zones due to its inherent structural stability, and on the nature of the dynamics
in the adjacent regions.

The proposed system, obviously, allows implementation in the form of a specific mechanical device,
which would enable experimental studies of hyperbolic chaos. Due to the visibility of the dynamics of the
system, which is a mechanical object, this kind of experiment could be useful in practical laboratory classes
for undergraduate and graduate students specializing in nonlinear dynamics.

The considered approach can serve as an example for constructing objects of different nature with
hyperbolic attractors based on systems in which oscillation excitation is transmitted between successive
stages of activity in a resonant manner due to the difference in the frequencies of small and large oscillations
by an integer number of times. The scheme turns out to be structurally simpler than many previously
proposed versions of systems with time-delay, demonstrating hyperbolic chaos [Kuznetsov & Ponomarenko,
2008; Kuznetsov & Pikovsky, 2008; Baranov et al., 2010; Arzhanukhina & Kuznetsov, 2014], due to the
absence of an auxiliary signal source at a frequency close to the natural frequency of the oscillator or of an
additional feedback circuit.

Our system based on the Froude pendulum can be interpreted as an example of application of the
control technique associated with a use of time-delay feedback to obtain a specific phenomenon of nonlinear
dynamics, namely, the robust hyperbolic chaos in our case. As can be supposed, in the context of mechanical
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Fig. 10. Portraits of attractors in the Poincaré section (upper row), diagrams for phases at successive periods of activity and
suppression (middle row) and histograms of the intersection angles of stable and unstable subspaces for the perturbation vectors
plotted for checking hyperbolicity by the criterion of angles (bottom row). The values of the parameter b are indicated by
inscriptions, and the remaining parameters are assigned according to (7). The left column corresponds to a hyperbolic attractor,
and the central and right columns correspond to non-hyperbolic attractors of oscillatory and rotational type respectively.

systems this direction can be interesting, say, for robotic devices, in perspective of controlling them with
involvement of the chaos control ideas [Schöll & Schuster, 2008].

Taking into account the analogy of pendulum systems with systems based on Josephson junctions
and on phase-locked loops, the considered model can serve as a sample for constructing electronic analogs
functioning as chaos generators, where roughness due to the hyperbolic nature of the attractor will be an
important advantage in the context of possible information and communication applications.

The example of a mechanical system presented here supplements a collection of currently known
feasible systems with hyperbolic chaos that is significant in a sense of imparting the physical content to
a mathematical theory. The object under discussion may be of particular interest for undergraduate and
graduate students studying the basics of the nonlinear dynamics and chaos theory and, hopefully, attractive
for scientific and educational experimental studies.

The presented material is interesting in respect of filling by the physical content of the hyperbolic
theory –that is a deeply developed and advanced section of the modern theory of dynamical systems,
which gives a rigorous justification for the presence of chaos characterized by the property of structural
stability.
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