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Abstract—This paper is a small review devoted to the dynamics of a point on a paraboloid.
Specifically, it is concerned with the motion both under the action of a gravitational field and
without it. It is assumed that the paraboloid can rotate about a vertical axis with constant
angular velocity. The paper includes both well-known results and a number of new results.
We consider the two most widespread friction (resistance) models: dry (Coulomb) friction and
viscous friction. It is shown that the addition of external damping (air drag) can lead to stability
of equilibrium at the saddle point and hence to preservation of the region of bounded motion
in a neighborhood of the saddle point. Analysis of three-dimensional Poincaré sections shows
that limit cycles can arise in this case in the neighborhood of the saddle point.
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INTRODUCTION

1. This paper gives a small review devoted to the dynamics of a material point on a paraboloid

x3 =
1

2

(
x21
a1

+
x22
a2

)
.

It presents an analysis of motion both under the action of a gravitational field and without it. It is
assumed that the paraboloid can rotate about the axis Ox3 with constant angular velocity Ω. The
paper includes well-known and a number of new results.

The main motivation for this work was the problem of a mechanical Paul trap [47] 1), a hyperbolic
paraboloid (saddle) which rotates about a vertical axis and on which a heavy ball rolls. Experiments
show that, under a suitable choice of the angular velocity of rotation of the saddle Ω, the dimension
and mass of the ball, the trajectory of the ball can remain in a neighborhood of the saddle point
for a fairly long time [25](see also videos on [60, 61]). An open problem is to construct a sufficiently
accurate model of this system that would take into account the effects of friction and allow an
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analysis of the onset and change of various motion regimes depending on the system parameters. In
particular, it would be very interesting to find an answer to the question of whether there exist system
parameters (and suitable initial conditions) under which the ball can remain in a neighborhood of
the saddle point for an arbitrarily long time or such a boundedness is temporary. At this point, we
recall that, for example, the gyroscopic stabilization of a shell (bullet) is always temporary since it
is destroyed by an arbitrarily small air drag [23].

If the analysis of this system is carried out by using the most general mechanical equations of
motion with friction and resistance forces taken into account, then the corresponding system of
equations is too complicated to make a complete analysis of its dynamics for all possible parameter
values. Therefore, at the first stage it is necessary to use various simplifications of that dynamics.
There are two natural approaches to the simplifications.

1) Investigation of the dynamics of a material point on a paraboloid. In this case, one ignores
the inertial properties of the ball with respect to rotation, but it is possible to take into
account various resistance forces [16, 19].

2) Analysis of the nonholonomic model of a ball rolling in a paraboloid [8, 9, 25]. This is the
limit of the so-called absolutely rough surface. The dynamics of the system is conservative
and does not allow an analysis of the effects caused by resistance.

The second approach, which involves investigation of nonholonomic systems and their application
to describe the rolling of bodies on different surfaces, has been actively developed in recent
years [3, 4, 11, 13, 15, 26, 35]. On the one hand, this avenue has yielded a qualitative description of
some dynamical effects such as the reversal of a rattleback [12], the existence of chaotic regimes [7],
etc. [53]. On the other hand, this avenue has made it possible to find effects [2, 17, 34, 50] which
show that the applicability of nonholonomic models is limited, which is due to the fact that the
work of friction and resistance forces is neglected.

In this paper, we focus on the first approach. The papers [16, 18, 19, 21, 46] show that the
interest in the dynamics of a particle on a paraboloid (both elliptic and hyperbolic) arose long
before the publication of the papers of Paul [47, 48] devoted to ion traps. For this reason, we have
included the analysis of dynamics not only on a hyperbolic, but also on an elliptic paraboloid (in
this case, the system is sometimes called a parabolic pendulum [21]). In addition, investigations of
motion in an elliptic paraboloid may be simpler when it comes to verifying the model of the system
by experiments.

A problem close to the problem of a parabolic pendulum was considered already by Huygens
when he searched for isochronic circular oscillations important for designing clocks. In his work [31]
he showed that, if one suspends a weight on a thread so that its end moves on the surface of the
paraboloid of revolution, the period of the pendulum’s rotation (i. e., precession) will not depend
on the angle of its inclination. To realize this mechanism, Huygens suggested fastening the point of
suspension of the thread at the top of an axisymmetric surface which is obtained by rotating some
part of the semicubical parabola

y2 = ax3 + b

about the vertical (by analogy with a cycloidal pendulum).

Brower [18] considered the problem of a material point in an elliptic rotating paraboloid under
the action of a gravitational field and dry (Coulomb) friction forces. He showed that the motion of
a particle relative to the surface ceases in finite time and that the stop does not necessarily occur at
the minimum point. Bottema [16] considered, instead of dry friction, the case of damping (viscous
resistance) forces and proposed two models: internal damping and external damping. He analyzed
the linear stability of equilibrium.

The other results obtained for this system also concern, as a rule, the analysis of the stability of
equilibrium and numerical integration of individual trajectories [36, 38, 55, 57]. The results of this
work clearly demonstrate that a detailed study of the dynamics of a point on a paraboloid for Ω �= 0
both in the absence and in the presence of friction cannot be accomplished by purely analytical
methods. For example, the search for physically realizable bounded trajectories in a neighborhood
of a saddle point can be carried out only by using a numerical analysis of the Poincaré section of the
system. In the presence of friction the Poincaré map of the system turns out to be three-dimensional.
Examples of investigation of some model and physical 3D Maps can be found in [20, 22, 24, 43, 44].
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2. In Section 1 we discuss the problem of constructing integrable potentials for the dynamics
of a particle on a stationary paraboloid. The paraboloid is considered as a limiting case of the
general quadric, for which this problem (in the case of separation of variables) was solved in [5, 58].
Here we construct analogous polynomial and fractionally rational potentials for which the system is
integrable. For this, we use a generating function which considerably simplifies the construction of
these potentials. For the simplest potentials, we find explicitly an additional integral that generalizes
the Joachimsthal integral for geodesics on an ellipsoid and the integral found in [29].

In Section 2 we derive equations of motion of a particle both with and without friction
(resistance) forces. We consider the two most widespread models of friction (resistance):

– dry (Coulomb) friction, for which the friction force is proportional to the force of normal
reaction;

– viscous friction, in which case friction is proportional to the velocity of the particle.

In the case of viscous friction we consider, following [16], two cases: internal damping, when the
force is proportional to the velocity of the particle relative to the rotating surface, and external
damping, when the force is proportional to the velocity of the particle relative to the fixed axes
(from a physical point of view, it describes the air drag).

Section 3 gives a detailed treatment of the problem of frictionless motion of a material point on
the surface of both a stationary and a rotating paraboloid. In the case of a stationary paraboloid,
the system turns out to be integrable. For this system, we plot a bifurcation diagram that describes
rearrangements of integral submanifolds and corresponding motion regimes. For the case of an
elliptic paraboloid, we find critical periodic solutions and carry out an analysis of their stability.
Using numerical analysis, we show that, in this case, asymptotic surfaces (separatrices) to unstable
periodic solutions split when rotation is added (Ω �= 0), which shows nonintegrability of the system
in the general case.

For a rotating paraboloid, we present results of the linear stability of equilibrium of a particle
at the origin of coordinates, analyze rearrangements of Hill’s regions [1] depending on the value of
the energy integral and the system parameters. These analytical results do not provide a complete
picture of the dynamics of the system. In particular, it is shown using numerical analysis of the
Poincaré section that even in the case of unbounded Hill’s regions the phase space can contain
regions of bounded motion. Regions of existence of bounded motions on the plane of the energy
integral and the angular velocity of rotation Ω are numerically plotted for some fixed ratios of the
principal radii of curvature.

Section 4 treats the problem of the motion of a material point on the surface of a rotating
paraboloid in the presence of viscous friction (damping) forces. A linear stability analysis for the
case of a linear combination of internal and external damping forces is made. It is shown that, in
the case of internal damping forces acting from the surface, the equilibrium at the vertex of the
hyperbolic paraboloid is always unstable. However, the instability pattern allows one to interpret
the behavior of the trajectories near equilibrium as temporary stability. It is also shown that the
addition of external damping (air drag) can lead to stability of equilibrium at the saddle point
and hence to preservation of the region of bounded motion in a neighborhood of the saddle point.
The analysis of three-dimensional Poincaré sections shows that, in this case, asymptotically stable
periodic solutions (limit cycles) may arise in the neighborhood of the saddle point.

For the sake of completeness we have added an appendix that includes the main results relating
to the stability and conservativeness of linear systems of Newtonian type. We also note that in
concrete examples it is usually not so much important to obtain inequalities expressing the stability
conditions (which are sometimes too cumbersome), as it is to clearly represent these results either
graphically or in the form of a physical (mechanical) description of the requirements concerning
the system parameters.

1. INTEGRABLE POTENTIALS FOR A PARTICLE ON A STATIONARY PARABOLOID

The integrable Jacobi problem of geodesics on an ellipsoid [32] is well known. Its natural
generalization is the problem of the motion of a particle on quadrics

x21
a1

+
x22
a2

+
x23
a3

= 1 (1.1)

in a given potential field U(x), x = (x1, x2, x3).
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Potentials that are integrable by the method of separation of variables and are polynomial and
rational (in the initial Cartesian coordinates) were found in [5, 58], see also [10].

A less known fact [10] is that these potentials can be obtained by a simpler method using the
generating function

Φz(x) =

(
1− x21

a1 − z
− x22

a2 − z
− x23

a3 − z

)−1

. (1.2)

When expanding Φz(x) in a power series of 1/z we obtain the polynomial potentials described
above. Accordingly, the Taylor series expansion (1.2) in a neighborhood of some point z = a0 �= 0
gives the simplest rational integrable potentials.

We consider here the limiting case of the quadric (1.1), namely, the motion of a material point
on a hyperbolic or an elliptic paraboloid

x3 =
1

2

(
x21
a1

+
x22
a2

)
. (1.3)

When a1a2 < 0, the paraboloid is hyperbolic, and when a1a2 > 0, it is elliptic.
To obtain the quadric (1.3), we need to make the substitution

x1 → x1, x2 → x2, x3 → x3 − x0,

a1 → a1x0, a2 → a2x0, a3 → x20

in (1.1), multiply (1.1) by x0 and perform the passage to the limit x0 → ∞. A similar passage to
the limit in (1.2) with the additional transformation z → zx0 will give us a generating function of
integrable potentials on the paraboloid

Φ(p)
z (x) =

(
z − 2x3 +

x21
a1 − z

+
x22

a2 − z

)−1

. (1.4)

The coefficients in the expansion of this function in powers of z−1 give polynomial integrable
potentials:

U2 = 2x3, U3 = 4x23 + x21 + x22, U4 = 8x33 + 4x3(x
2
1 + x22) + a1x

2
1 + a2x

2
2, . . . .

In a similar way, from the expansion in a neighborhood of z = a0 �= 0 we find rational potentials of
the form

V0 = Φ(p)
z (a0) =

(
a0 − 2x3 +

x21
a1 − a0

− x22
a2 − a0

)−1

, V1 = V 2
0

(
1 +

x21
(a1 − a0)2

+
x22

(a2 − a0)2

)
, . . . .

To prove this fact, we define the parabolic coordinates (u, v) as the roots of the equation

z − 2x3 +
x21

a1 − z
+

x22
a2 − z

= 0.

This yields

x21 =
a1(a1 − u)(a2 − v)

a2 − a1
, x22 =

a2(a2 − u)(a2 − v)

a1 − a2
, x3 =

1

2
(u+ v − a1 − a2).

The kinetic energy of a material point of unit mass on a paraboloid is written as

T =
1

2
(ẋ21 + ẋ22 + ẋ23) =

u− v

4

(
uu̇2

(a1 − u)(a2 − u)
− vv̇2

(a1 − v)(a2 − v)

)
,

and the potential (1.4) is written as

Φ(p)
z = (u− v)−1

(
a1a2
z

(
1

v
− 1

u

)
+

a1a2 − (a1 + a2)u+ u2

u(z − u)
− a1a2 − (a1 + a2)v + v2

v(z − v)

)
.

Thus, the variables are separated at any value of z, and hence every term in the expansion in this
parameter defines the separable potential.

An additional integral can also be found by the method of separation of variables. We present
it explicitly for the case of the potential

U = μx3 +
c1
x21

+
c2
x22

.
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This integral, which generalizes the well-known Joachimsthal integral in the problem of geodesics
on an ellipsoid, has the form

F =

(
1 +

x21
a21

+
x22
a22

)(
ẋ21
a1

+
ẋ22
a2

+ μ+
2c1
a1

1

x21
+

2c2
a2

1

x22

)
.

For c1 = c2 = 0, an integral in explicit form was found in [29].

2. A PARTICLE IN A GRAVITATIONAL FIELD ON A ROTATING PARABOLOID

2.1. Equations of Motion, Various Friction Models

We now consider the problems of stability and destabilization of motion of a material point in
a gravitational field on a rotating paraboloid (1.3). Making the scaling transformation xk → a1xk,
k = 1, 2, 3, we represent the surface equation as

x3 =
1

2

(
x21 + bx22

)
, b =

a1
a2

. (2.1)

When b > 0, the paraboloid is elliptic, and when b < 0, it is hyperbolic.

In a (noninertial) coordinate system Ox1x2x3, which rotates together with the surface (2.1), for
a point of unit mass the Lagrangian of the system can be represented as

L =
1

2

(
(ẋ1 − Ωx2)

2 + (ẋ2 +Ωx1)
2 + (x1ẋ1 + bx2ẋ2)

2
)
− 1

2
g
(
x21 + bx22

)
, (2.2)

where Ω is the angular velocity of rotation of the paraboloid and g is the free-fall acceleration.

The corresponding equations of motion are(
∂L

∂ẋ

)·
− ∂L

∂x
= Q,

x = (x1, x2), Q =

(
Q

(0)
1 +Q

(0)
3

∂x3
∂x1

, Q
(0)
2 +Q

(0)
3

∂x3
∂x2

)
,

(2.3)

where
(
Q

(0)
1 , Q

(0)
2 , Q

(0)
3

)
is the three-dimensional vector of nonpotential forces acting on the material

point in R
3; this vector is assumed to be tangent to the surface (2.1).

If Q = 0, then the system admits the energy integral

E =
1

2

(
ẋ21 + ẋ22 + (x1ẋ1 + bx2ẋ2)

2
)
− Ω2

2
(x21 + x22) +

g

2

(
x21 + bx22

)
. (2.4)

As we see, for integrability we need another additional integral. Below (see Section 3) it will be
shown using numerical simulation that in the general case, when Ω �= 0, there exists no additional
integral.

Remark. The equations of motion (2.3) are obtained from the Lagrange equations in redundant
variables (x1, x2, x3) [1] with an undetermined multiplier, by eliminating this multiplier and the
redundant coordinate x3.

It should be kept in mind that it is the three-dimensional vector of external forces Q(0) that
is found from physical or mechanical considerations (experiments). On the other hand, it is less
convenient to analyze the dynamics of this system in redundant variables. This is why we have
passed to equations (2.3).

Possible friction forces dealt with in [16, 18] are as follows.

1◦. Internal viscous friction (internal damping), for which the drag force opposes the relative
velocity of the point:

Q
(0)
1 = −μẋ1, Q

(0)
2 = −μẋ2, Q

(0)
3 = −μẋ3,
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where μ is the coefficient of friction. Substituting into (2.3) gives

Q = −μ̂ẋ = −∂Ri

∂ẋ
,

Ri =
1

2
(ẋ, μ̂ẋ), μ̂ = μ

⎛
⎝1 + x21 bx1x2

bx1x2 1 + b2x22

⎞
⎠ ,

(2.5)

where Ri is the Rayleigh function and μ̂ is a positive definite matrix.

2◦. External viscous friction (for example, air drag). In this case, the friction force opposes the
velocity of the point in the fixed coordinate system:

Q
(0)
1 = −μ(ẋ1 − Ωx2), Q

(0)
2 = −μ(ẋ2 +Ωx1), Q

(0)
3 = −μẋ3.

In this case, we find

Q = −μ̂ẋ+ D̂x, D̂ =

⎛
⎝ 0 μΩ

−μΩ 0

⎞
⎠ ,

where μ̂ is a 2× 2 matrix defined in (2.5).

3◦. Dry friction:
Q

(0)
1 = −μN

v
ẋ1, Q

(0)
2 = −μN

v
ẋ2, Q

(0)
3 = −μN

v
ẋ3,

v =
√

ẋ21 + ẋ22 + ẋ23,

N =
g + ẋ21 + bẋ22 + 2Ω(x1ẋ2 − bx2ẋ1) + Ω2(x21 + bx22)√

1 + x21 + b2x22
,

where N is the value of the reaction force. Thus, we obtain

Q = −N

v
μ̂ẋ, (2.6)

where μ̂ is also the matrix from (2.5).

2.2. The Problem of Stability of the Equilibrium Point

It follows from (2.3) that, in the case 1◦, 2◦ and in the case without friction, the origin of
coordinates

x1 = x2 = 0, ẋ1 = ẋ2 = 0

is an equilibrium point. Its stability is the focus of our study.
By suitably rescaling the axes the problem of linear stability can be reduced to analysis of a four-

dimensional system of special type. Using the two-dimensional vectors x = (x1, x2), v = (v1, v2),
we write it in vector form as

ẋ = v, v̇ = −Ĉ(α)x+ D̂(α)x− μ̂(α)v + ω̂(α)v,

Ĉ = ĈT , D̂ = −D̂T , μ̂ = μ̂T , ω̂ = −ω̂T ,
(2.7)

where Ĉ, D̂, μ̂, ω̂ are 2× 2 matrices depending on the parameters α = (α1 . . . αm) of the initial
system.

In this case, α = (g, b,Ω) and, regardless of the law of friction, we have

Ĉ =

⎛
⎝g − Ω2 0

0 gb− Ω2

⎞
⎠ , ω̂ =

⎛
⎝ 0 2Ω

−2Ω 0

⎞
⎠ . (2.8)

Hence, for case 1◦ we additionally obtain

D̂ = 0, μ̂ =

⎛
⎝μ 0

0 μ

⎞
⎠ . (2.9)
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For case 2◦:

D̂ =

⎛
⎝ 0 μΩ

−μΩ 0

⎞
⎠ , μ̂ =

⎛
⎝μ 0

0 μ

⎞
⎠ . (2.10)

Remark. In the case of dry friction (2.6), the problem of stability of the equilibrium point
x1 = x2 = 0 loses its significance. As shown in [18], if a material point reaches a state of rest,
it does so in finite time. Note that the end point of the trajectory may or may not coincide with the
origin of the coordinate system, i. e., with the vertex (when b > 0) or with the saddle point (when
b < 0) of the paraboloid.

3. FRICTIONLESS MOTION OF A PARTICLE
We first consider the motions of a particle in the absence of friction. To start with, we analyze

the simplest integrable case with Ω = 0.

3.1. An Integrable Case with Ω = 0

As noted above (Section 1), in this case the system admits two quadratic integrals: the energy
integral and generalizations of the Joachimsthal integral:

E =
1

2

(
ẋ21 + ẋ22 + (x1ẋ1 + bx2ẋ2)

2
)
+

g

2
(x21 + bx22),

F = (1 + x21 + b2x22)(ẋ
2
1 + bẋ22 + g).

(3.1)

In this case, the separating variables are given by

x21 =
(u− 1)(v − 1)

b−1 − 1
, x22 =

(b−1 − u)(v − b−1)

b(b−1 − 1)
.

Depending on the sign of b, the variables u and v are defined in the following intervals:

b > 0, 0 < min(1, b−1) � u � max(1, b−1) � v;

b < 0, u � b−1 < 0, 1 � v.

The corresponding coordinate lines are shown in Fig. 1.

Fig. 1. Coordinate grid of separating variables u and v on the plane x1, x2.

On the level surface of the first integrals (3.1), which is given by the relations E = gh and
F = gk, the evolution of the variables u and v is given by

u̇2 =
4g

(v − u)2
(u− 1)(b−1 − u)

u
R2(u), v̇2 = − 4g

(v − u)2
(v − 1)(v − b−1)

v
R2(v),

R2(z) = z2 − (2h+ 1 + b−1)z + kb−1.

(3.2)

Here and in what follows, when b > 0, we assume without loss of generality that b < 1.
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We now find the values of the parameters k and h at which a rearrangement of the regions of
possible motion occurs on the plane (x1, x2). According to (3.2), these values of k and h correspond
to situations where one of the roots of the polynomial R2(z) is equal either to 1 or to b−1 or
correspond to the case where the discriminant R2(z) vanishes. On the plane R

2 = {(k, h)}, these
values of the integrals form bifurcation curves, see Fig. 2:

γ1 : k = 1 + 2h, with R2(b
−1) = 0;

γ2 : k = 1 + 2bh, with R2(1) = 0;

γ3 : 4bk = (1 + b+ 2bh)2, with the discriminant R2(z) equal to zero.

Fig. 2. Bifurcation diagram and projections of the regions of possible motion onto the plane (x1, x2). Grey
denotes the region of possible values of k and h.

According to (3.2), when the values of the parameters k and h lie on the curves γ1, γ2 and γ3,
the initial system (2.3) possesses critical solutions which turn out to be periodic when b > 0. Thus,
we see that, when Ω = 0, the system (2.3) has the following families of critical solutions:

– two families (the curves γ1, γ2) of planar motions in the principal planes of the paraboloid;

– the curve γ3 with b > 0 corresponds to two families of elliptic closed trajectories, which differ
only in the direction of motion along them, and when b < 0, this curve corresponds to families
of hyperbolic nonclosed trajectories.

In addition to these curves, we show in grey the regions of possible values of these quantities
on the plane (k, h) (in other words, when k and h are chosen outside these regions, the equations
E = gh and F = gk admit no real solutions for the variables xk, ẋk, k = 1, 2). Thus, we obtain
a bifurcation diagram of this integrable Hamiltonian system. Each point in the region of possible
values k, h �∈ γk, k = 1, 2, 3 corresponds in phase space to one or several invariant (Liouville) tori,
and when the curves γk, k = 1, 2, 3, are intersected, rearrangements of these tori occur.

Thus, we see that, when b > 0, the curves γ1 and γ2 correspond to periodic pendulum motions
in the principal planes of the paraboloid, and the curve γ3 corresponds to periodic motions in
elliptic (in projection) orbits. As is well known [6], if the bifurcation curves lie on the boundary
of a bifurcation diagram (more precisely, a bifurcation complex), then the corresponding periodic
solutions are stable. This leads us to the following conclusion:

1) pendulum motions in the plane with the largest principal radius (the curve γ2) are always
stable;

2) elliptic periodic solutions (the curve γ3) are always stable;

3) pendulum solutions in the plane with the smallest principal radius are stable for k < b−1 and
unstable (the curve γ1) for k > b−1.
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3.2. A Nonintegrable Case with Ω �= 0

We now turn to analysis of the general case of a particle moving on a rotating paraboloid.
As will be shown below, by using a numerical construction of a Poincaré section, the system is
found to be nonintegrable. Of particular interest in this case is the problem of the existence of
particles’ trajectories which remain, as t → ∞, in a bounded region in a neighborhood of the origin
of coordinates. We consider three approaches to this problem:

– analysis of linear stability;

– construction of Hill’s regions;

– numerical investigation using a Poincaré section.

1. Linear stability of equilibrium points
We briefly describe the well-known results [16]), which pertain to the stability of the equilibrium

point of the system (2.3) with Ω �= 0. As is well known [23], this stability with b < 0 is formal from
a mathematical point of view since it is destroyed by adding an arbitrarily small friction (see the
Appendix, Table 2). Nevertheless, from a physical point of view this stability is of great importance
(for details, see [23]). Here and in what follows, we use the notation

Ω̄ =
Ω
√
g
.

Case b > 0 — an elliptic paraboloid. According to (2.8) and Table 2 (lines 1 and 2) in the
Appendix, the stability conditions in this case can be written as

– for small |Ω| the equilibrium point is linearly stable under the condition

Ω̄2 < min(1, b); (3.3)

– for large |Ω| stability arises under the condition

Ω̄2 > max(1, b).

As is easy to verify, the second of the stability conditions is satisfied (see Table 1, line 2):

4Ω̄2 >
(√

Ω̄2 − 1 +
√

Ω̄2 − b
)2

.

Case b < 0 — a hyperbolic paraboloid (saddle). Using in a similar way relations (2.8) and
Table 2 in the Appendix, we find conditions for stability of the equilibrium point at the saddle
point:

– when −1 < b, 1 < Ω̄2;

– when b < −1, 1 < Ω̄2 < − (1−b)2

8(1+b) .

Summarizing the above, we represent the stability regions of the equilibrium point on the plane
(Ω̄2, b), see also [16].

Thus, we see that at sufficiently large Ω̄2 (in the case of an elliptic paraboloid, b > 0 and
Ω̄2 > max(1, b), and in the case of a saddle, b < 0 and Ω̄2 > 1), the number of unstable degrees

of freedom becomes even (it coincides with the number of negative eigenvalues of the matrix Ĉ
in (2.7)). Consequently, according to Thomson’s theorem [23, 56] a gyroscopic stabilization (which
explains the stability regions shown by hatching in Fig. 3) is possible.

To carry out a nonlinear stability analysis in the case (3.3), it suffices to use the method of
Lyapunov functions. The role of a Lyapunov function is played by the energy integral (2.4). In the
gyroscopic case, the proof of nonlinear stability requires using the KAM theorem and analyzing the
condition for the absence of resonance and the twisting condition (for applications, see, e. g., [1, 46]).

Remark. If we omit centrifugal forces from consideration when calculating unstable degrees of
freedom, as was done in [16], then this will lead to an incorrect conclusion that Thomson’s theorem
does not hold.
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We formulate some conclusions.

1. It is impossible to stabilize the equilibrium point on the saddle (b < 0) if Ω̄2 < 1 or |b| > 3
(i. e., in the case of slow rotation and very steep saddles).

2. Both on an elliptic and on a hyperbolic paraboloid, the stability region is unbounded in Ω̄2.

3. For every (noncircular) elliptic paraboloid
(0 < b �= 1) one can choose a rotational velocity Ω̄ at which the equilibrium point is unstable
(gyroscopic destabilization).

4. For every elliptic paraboloid one can choose a rotational velocity Ω̄ at which the stability of
the equilibrium point is disturbed.

Fig. 3. Regions of stability (grey) and instability (white) of the equilibrium point on the parameter plane(
Ω̄2, b

)
. The region of gyroscopic stabilization is hatched.

2. Hill’s regions

In addition to the stability analysis of equilibrium points, for some mechanical systems it
is possible to establish that the trajectory remains in a bounded region of configuration space.
Bounded regions of configuration space are defined from the condition of nonnegativeness of the
kinetic energy on a given level set E = const of the energy integral (2.4). These regions are analogs of
Hill’s regions in celestial mechanics [1]. For convenience, we will call them Hill’s regions throughout
the remainder of the text.

In this case, we fix the level set of the energy integral as follows:

E = gh, h = const

and analyze the form of the regions of possible motion on the plane (x1, x2) depending on the values
of the parameters Ω̄2, b and the level set of the energy integral h.

Expressing the kinetic energy from (2.4) and using its positive definiteness, we obtain an
inequality that defines possible values of the coordinates:

1

g
T = h− 1

2

(
1− Ω̄2

)
x21 −

1

2

(
b− Ω̄2

)
x22 � 0. (3.4)

In other words, the region bounded by inequality (3.4) is a projection of the isoenergetic
submanifold M3

h onto configuration space, in this case onto the plane R
2 = {(x1, x2)}.
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We see that the boundary of Hill’s region in this case is given by a second-order curve whose
type and position are determined by the signs of the coefficients at x21 and x22 in (3.4). Thus, the
parameter plane (Ω̄2, b) is partitioned by the straight lines

Ω̄2 = 1 and Ω̄2 = b (3.5)

into four regions. In each of these regions, when the sign of h is changed, the rearrangements of
Hill’s regions are of the same type.

Figure 4 shows the parameter plane (Ω̄2, b) with the straight lines (3.5) shown on it. The regions
corresponding to different types of Hill’s regions are shown as hatched or crosshatched areas. Grey
denotes the parameter region corresponding to bounded Hill’s regions with h � 0. Hill’s regions
themselves (with h � 0 and h < 0) are also shown.

Thus, it is evident from Fig. 4 that Hill’s regions are bounded only if the parameters lie in region
a and are given by the inequality

b > 0, Ω̄2 < min(1, b), h � 0. (3.6)

Therefore, the method of Hill’s regions, too, provides no explanation for the existence of bounded
trajectories in the Paul trap (i. e., when b < 0).

Fig. 4. Regions on the parameter plane
(
Ω̄2, b

)
which correspond to different types of Hill’s regions. Hill’s

regions on the plane are shown in white (i. e., in the grey regions, motion is impossible).

3. A Poincaré map

We see that analytic investigations can in many cases give no answer to the question of existence
of bounded trajectories near the vertex of a paraboloid. For this reason we will find out what can
be established by numerical analysis.

To investigate the phase flow (2.7), (2.8) without friction (D̂ = 0, μ̂ = 0), we use the method of
constructing a Poincaré map. In this paper, the plane x1 = 0 is chosen as a secant, and the Poincaré
map is plotted in the variables (x2, v2).

As a rule, this method can be used only in the case where the recurrence of trajectories is
observed. For this system, this occurs in the following cases:

– when the isoenergetic submanifold is bounded,

– near stable periodic solutions.

The first case takes place when inequalities (3.6) are satisfied. Indeed, the fact that Hill’s region
is bounded and the positive definiteness of the kinetic energy as a quadratic form in velocities imply
that the isoenergetic submanifold is bounded in the entire phase space. Examples of Poincaré maps
for this case are given in Fig. 5.
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The second case takes place when the energies are close to zero and when the parameters Ω̄2

and b lie in the region of gyroscopic stabilization of equilibrium points, which are hatched in Fig. 3.
In this case, Hill’s regions are unbounded (see Fig. 4). However, in phase space there exists a
region of bounded motion. This region forms near a stable periodic solution arising from the stable
equilibrium point x1 = x2 = 0. Examples of the corresponding Poincaré maps are given in Fig. 6.

Using a Poincaré section, we first show that in the general case (when Ω �= 0) the system (2.3)
without friction is nonintegrable both when b > 0 and when b < 0. For this purpose, in Fig. 7 we
have constructed separatrices to unstable periodic solutions. Their transverse intersection serves as
a numerical proof of the nonintegrability of the system.

Fig. 5. A Poincaré map of the system (2.2), (2.3) for b = 0.5 and different values of Ω, h.

Fig. 6. A Poincaré map of the system (2.2), (2.3) for b = 0.5 and different values of Ω, h.

Fig. 7. A Poincaré map of the system (2.2), (2.3) for a) b = 0.5, Ω = 0.1, h = 1.5; b) b = −0.5, Ω = 1.5,
h = −0.03. Grey denotes the regions of impossibility of motion, and the heavy lines indicate separatrices.
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It can be seen from Figs. 6 and 7 that, when b < 0, a region of bounded trajectories can arise
in a neighborhood of the saddle point of the hyperbolic paraboloid. We examine it in detail at two
fixed values of the parameter b:

– b = −0.5, see Figs. 8 and 10a;

– b = −1.5, see Figs. 9 and 10b.

The numerical analysis has yielded the following results:

– in some range of values of Ω, h (see Figs. 8, 9) in a neighborhood of the saddle point of the
hyperbolic paraboloid there exists an unstable periodic solution γ′′0 ;

– one pair of separatrices to these solutions γ′′0 bounds the region of trajectories which remain
at all times in a neighborhood of the saddle point of the paraboloid.

The regions of existence of solutions γ′′0 and hence of regions of motion on the plane (Ω, h) are
shown in Fig. 10a, 10b for the values b = −0.5 and b = −1.5, respectively.

Fig. 8. A Poincaré map of the system (2.2), (2.3) for b = −0.5 and a) h = −0.05, Ω = 1.2; b) h = −0.05,
Ω = 1.5; c) h = −0.05, Ω = 2; d) h = 0, Ω = 1.2; e) h = 0, Ω = 1.5; f) h = 0, Ω = 2; g) h = 0.01, Ω = 1.2; h)
h = 0.01, Ω = 1.5; i) h = 0.01, Ω = 2; j) h = 0.1, Ω = 1.2; k) h = 0.1, Ω = 1.5; l) h = 0.1, Ω = 2. Grey denotes
the regions of impossibility of motion, and the heavy lines indicate the separatrices that bound the regions of
bounded motion.
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Fig. 9. A Poincaré map of the system (2.2), (2.3) and their enlarged fragments (Fig. b), e), h)) for b = −1.5 and
a), b) h = −0.005, Ω = 1.05; c) h = −0.005, Ω = 1.2; d), e) h = 0, Ω = 1.05; f) h = 0, Ω = 1.2; g), h) h = 0.01,
Ω = 1.05; i) h = 0.01, Ω = 1.2. Grey denotes the regions of impossibility of motion, and the heavy lines indicate
the separatrices that bound the regions of bounded motion.

Fig. 10. Numerically plotted regions of existence of bounded motion (grey) on the plane (Ω, h) for a) b = −0.5;
b) b = −1.5.

4. MOTION OF A PARTICLE WITH FRICTION

As noted in Section 2.1, the previous paper [16] dealt with the forces of internal and external
viscous friction. We consider the case where these forces act simultaneously:

Q(0) = −μ1ṙ − μ2(ṙ +Ωe3 × r) = −μ(ṙ + δΩe3 × r),

μ = μ1 + μ2, δ =
μ2

μ1 + μ2
,
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where Q(0) =
(
Q

(0)
1 , Q

(0)
2 , Q

(0)
3

)
, r = (x1, x2, x3), e3 = (0, 0, 1) are three-dimensional vectors.

The parameter μ characterizes the general coefficient of friction, and δ characterizes the contribution
of external friction (for example, air drag) to the general friction.

4.1. Stability of the Equilibrium Point

Projecting the system onto the area R
2 = {x = (x1, x2)} and linearizing it in a neighborhood of

the origin of coordinates, we obtain the linearized system (2.7), which in this case has the form

ẋ = v, v̇ = −Ĉx+ D̂x− μ̂v + ω̂v,

Ĉ =

⎛
⎝g − Ω2 0

0 gb− Ω2

⎞
⎠ , D̂ =

⎛
⎝ 0 μδΩ

−μδΩ 0

⎞
⎠ , μ̂ =

⎛
⎝μ 0

0 μ

⎞
⎠ , ω̂ =

⎛
⎝ 0 2Ω

−2Ω 0

⎞
⎠ .

Calculating the characteristic polynomial of this system, P (λ), and the minor Δ3 of the Hurwitz
matrix (see the Appendix)

P (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4, Δ3 = a1a2a3 − a21a4 − a23,

we obtain stability conditions in the form

a1 = 2μ > 0, a2 = 2Ω2 + g(1 + b) + μ2 > 0, a3 = μ
(
2(2δ − 1)Ω2 + g(1 + b)

)
> 0,

a4 = (g − Ω2)(bg − Ω2) + μ2δ2Ω2 > 0,

Δ3 = μ2
(
2
(
2(1 − δ)2Ω2 + g(1 + b)

)
(4Ω2 + μ2) + g2(1− b)2

)
> 0.

(4.1)

By analogy with the dimensionless angular velocity Ω̄, we determine the dimensionless coefficient
of friction

μ̄ =
μ
√
g
.

When δ = 0 and δ = 1, relations (4.1) simplify considerably and we obtain the stability
conditions presented in [16], see Table 1.

Table 1. Conditions for stability of the equilibrium point in the case of internal (δ = 0) or external
friction (δ = 1).

δ = 0 δ = 1

Ω̄2 > − 1
2 (1 + b),

0 < b, Ω̄2 + 1
4 μ̄

2 < − (1−b)2

8(1+b) for b < −1,

Ω̄2 < min(1, b) b > Ω̄2 + μ̄2 + μ̄2

Ω̄2−1
for Ω̄2 < 1,

b < Ω̄2 + μ̄2 + μ̄2

Ω̄2−1
for 1 < Ω̄2.

We first discuss briefly the main features typical of purely internal (δ = 0) and purely external
friction (δ = 1), and then we point out the main characteristics of the general case (4.1).

As can be seen from Table 1, when δ = 0, the stability region on the plane (Ω̄2, b) coincides
with the stability region without friction in which no gyroscopic stabilization arose (see Fig. 3, grey
unhatched region). This is consistent with the well-known Thomson –Tait theorem [56, p. 391].
Thus, when internal friction is added, the stability regions deform abruptly, i.e., as the friction
coefficient tends to zero, none of the solutions in the region of gyroscopic stabilization can become
stable.

When δ = 1, the situation is quite different. As can be seen from Fig. 11, the region of stability
of the Hamiltonian system (μ = 0, see Fig. 3) deforms continuously as μ increases.
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Fig. 11. Evolution of the stability regions of the equilibrium point only with external damping (δ = 1) when
the damping coefficient increases.

Fig. 12. Evolution of the stability regions of the equilibrium point for the fixed coefficient of total friction
(μ = 0.7) and for the changing contribution of external damping.

4.2. Numerical Analysis

For numerical investigation of the dynamics of the system with friction we use the method of
constructing a three-dimensional Poincaré map. We choose the plane x1 = 0 as a secant, just as
we did when we constructed two-dimensional maps. We will construct the map in the space of the
remaining variables (x2, v2, v1).

Figure 13 shows examples of several trajectories on a three-dimensional Poincaré map. The
initial conditions for these trajectories have been chosen in the region of bounded motion for the
problem without friction with the same parameters (Fig. 8e).

The results of numerical experiments show that, in the case of purely internal friction, all
trajectories near the fixed point x1 = x2 = 0 go to infinity (δ = 0).

If the initial conditions are chosen in the region of bounded motion for the frictionless problem,
then the motion can be divided into two stages. At the first stage, the trajectory approaches the
stable invariant manifold (separatrix) of the fixed point. The trajectory can pass fairly close to the
fixed point, and the time of approach can be fairly large at small coefficients of friction. At the
second stage, the trajectory of motion along the separatrix goes to infinity. At small coefficients
of friction such behavior can be regarded as temporal stability of the fixed point. This raises the
question of the time of stability during which the point remains near the top of the saddle.

In the case of purely external friction (δ = 1), two situations are possible depending on the
stability of the fixed point x1 = x2 = 0. In the case of an unstable fixed point (uncolored regions
in Fig. 11), all trajectories of motion near this point go almost right away to infinity.
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Fig. 13. Examples of trajectories on a three-dimensional Poincaré map for b = −0.5, Ω = 1.5, μ = 0.0001 and
different values of δ.

In the case of a stable fixed point (grey regions in Fig. 11), a region of bounded motion
(attraction) arises near it. It is interesting that in this case not only the fixed point itself is
asymptotically stable, but attracting periodic solutions (limit cycles) of different orders also arise
near this point. Such a situation is shown in Fig. 13c. In this figure, one can see two attracting
limit cycles of first order and one of third order.

In the case of mixed friction, as the contribution of external friction increases, one can observe
a transition from the effect of temporal stability of the fixed point to the formation of a region of
bounded motion (attraction) near this point. At some values of δ these two types of behavior can
coexist. Figure 13b gives an example of a Poincaré map in which one can simultaneously observe
both the region of bounded motion (attraction) near the fixed point and the effect of temporal
stability. A more detailed analysis of this problem can be carried out, for example, by plotting
charts of dynamical regimes [28, 41, 54].

APPENDIX. LINEAR NEWTONIAN SYSTEMS — THE PROPERTY OF BEING
HAMILTONIAN AND STABILITY

Let us consider systems which describe the motion of a material point on the plane R
2 =

{
x =

(x1, x2)
}
under the action of given forces:

ẍ = F (x, ẋ).

Suppose that the forces are linear in x and ẋ.
Denoting ẋ = (v1, v2), we represent this system in matrix form

ż = Az, A =

⎛
⎝ 0 E

− Ĉ+ D̂ −μ̂+ ω̂

⎞
⎠ , (A.1)

where z = (x1, x2, v1, v2) and E is the 2× 2 identity matrix. Assume that

Ĉ =

⎛
⎝c1 0

0 c2

⎞
⎠ , D̂ =

⎛
⎝0 −d

d 0

⎞
⎠ , μ̂ =

⎛
⎝μ11 μ12

μ12 μ22

⎞
⎠ , ω̂ =

⎛
⎝0 −ω

ω 0

⎞
⎠ . (A.2)

The diagonalization of the matrix Ĉ is achieved by a suitable rotation of the plane (x1, x2).
The physical meaning is this:

– the matrix Ĉ corresponds to potential forces with the potential energy U = 1
2 (x, Ĉx);

– the matrix D̂ defines the so-called circulatory forces [37];

– the matrix μ̂ describes dissipation;

– the matrix ω̂ describes gyroscopic forces.
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The characteristic polynomial of the system (A.1) can be written in terms of the coefficients of
the matrices as follows:

P = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4

a1 = Trμ̂, a2 = c1 + c2 + ω2 + det μ̂, a3 = 2dω + c1μ22 + c2μ11,

a4 = c1c2 + d2.

(A.3)

1. Explicit Hamiltonian Representation

We start the analysis of the system (A.1) from a particular case where the characteristic
polynomial is even: P (λ) = P (−λ). Obviously, it is biquadratic:

P (λ) = λ4 + a2λ
2 + a4.

According to (A.3), in this case the parameters of the matrices (A.1) satisfy the relations

μ11 = −μ22, 2dω = μ11(c1 − c2). (A.4)

On the one hand, it is well known that the evenness property is possessed by the characteristic
polynomial for Hamiltonian systems. On the other hand, we see that, in the general case,
conditions (A.4) do not guarantee that the force F (x, ẋ) is purely potential (if d �= 0) and purely
gyroscopic (if μ̂ �= 0). For this reason, such a system is sometimes regarded as nonconservative.

However, it turns out that in this case the system is Hamiltonian, more precisely, bi-
Hamiltonian [1]. To show this, we will search for a representation of the system in the following
(generalized) Hamiltonian form:

ż = J
∂H

∂z
,

where J is a constant nondegenerate skew-symmetric 4× 4 matrix and H(z) is a homogeneous
quadratic function that is nondegenerate in z. As is well known [1], such a system can also be
written in canonical form. However, it can turn out that the canonical variables are given in terms
of the initial z in a fairly complicated way, and so we do not discuss this question here. An analysis
of the problems of the existence and independence of first integrals in multidimensional linear
Hamiltonian systems that have not been represented in canonical form is carried out in [40].

We first show that in this case the system possesses an integral of motion that is necessary for
the Hamiltonian representation.

Proposition. The system (A.1) admits under conditions (A.4) a two-parameter family of first
integrals

H = α1H1 + α2H2,

where α1 and α2 are arbitrary constants, and H1 and H2 are independent quadratic integrals of
motion

H1 =
1

2
(ω − μ12)

(
v21 + c1x

2
1

)
+

1

2
(ω + μ12)

(
v22 + c2x

2
2

)
+ μ11v1v2

−1

2
dμ11x

2
1 +

1

2
dμ11x

2
2 −

1

2
(2dμ12 − c1μ11 − c2μ11)x2x1,

H2 =
1

2
(c1 − c2)

(
v21 + c1x

2
1

)
+ dv1v2 + (ω + μ12)(dv1x1 + dv2x2 + c1v2x1 − c2v1x2)

−1

2

(
c1(ω

2 − μ2
12) + d

(
d− (ω + μ12)μ11

))
x21 −

1

2

(
c2(ω + μ12)

2

−d
(
d− (ω + μ12)μ11

))
x22 +

(
dμ2

12 −
1

2
ωμ11(c1 + c2)− c2μ11μ12 + dc1

)
x1x2.

(A.5)

The proof is by straightforward verification.
We now turn our attention to constructing the matrix J. Using the integrals (A.5), we choose

the parameters α1 and α2 in such a way that the matrix J looks the simplest. There are three
different cases:
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1. d �= 0, ω =
μ11

2d
(c1 − c2);

2. d = 0, μ11 = 0;

3. d = 0, c1 = c2.

Here are examples of the simplest symplectic structures and Hamiltonians for each of the cases.

1. d �= 0.

J = α−1

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −2μ11 2d 0

2μ11 0 0 −2d

−2d 0 0 2dμ12 − (c1 + c2)μ11

0 2d (c1 + c2)μ11 − 2dμ12 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

α =
(
−2dμ11μ12 + c1μ

2
11 + c2μ

2
11 + 2d2

)
H =

(
d+ (ω − μ12)μ11

)
v21 −

(
d− (ω + μ12)μ11

)
v22 + 2μ2

11v1v2

+2μ11(dv1x1 + dv2x2 + c1v2x1 − c2v1x2) + 2d2x1x2 + dc1x
2
1 − dc2x

2
2,

(A.6)

where we also assume that α �= 0.

2. d = 0, μ11 = 0.

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1
ω−μ12

0

0 0 0 1
ω+μ12

− 1
ω−μ12

0 0 −1

0 − 1
ω+μ12

1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

H = (ω − μ12)
(
v21 + c1x

2
1

)
+ (ω + μ12)(c2x

2
2 + v22),

(A.7)

where we assume ω �= μ12 and ω �= −μ12.

3. d = 0, c1 = c2.

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 − 1
c1

0 0

1
c1

0 0 0

0 0 0 −1

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

H = (ω − μ12)v
2
1 + (ω + μ12)v

2
2 + 2μ11v1v2 − 2v1c1x2 + 2v2c1x1,

(A.8)

where we assume c1 �= 0.

Remark. This implies that in the linear approximation all systems of Newtonian type

ẍ = F (x), x = (x1, x2), F (0) = 0

turn out to be conservative even if rotF =

(
∂F1

∂x2
− ∂F2

∂x1

) ∣∣∣
x=0

= d �= 0.
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The roots of the characteristic polynomial (A.3) are complex conjugate and symmetric relative to
the complex axis. Their arrangement on the complex plane and the corresponding type of the fixed
point of the system (A.1) are shown in Fig. 14 as functions of the coefficients (a2, a4). Consequently,

in the case (A.4) the stability conditions are written in terms of the coefficients of the
matrices (A.2) in the form

c1c2 + d2 > 0, (c1 + c2 + ω2 − μ2
11 − μ2

12)
2 − 4(c1c2 + d2) > 0,

c1 + c2 + ω2 − μ2
11 − μ2

12 > 0.

We note that the first two inequalities (a4 > 0, a22 − 4a4 > 0) define in the parameter space the

set S(0), which is, as a rule, disconnected and consists of several (disjoint) connectedness components

S(0) = S1 ∪ S2 ∪ . . . ∪ Sl.

The last inequality (a2 > 0) allows one to single out among these connectedness components those
in which stability is observed.

Remark. Since the flow of the system in this case preserves the phase volume (Trμ̂ = 0), the
equilibrium point cannot be asymptotically stable.

Fig. 14

2. The Case D̂ = 0 and the Case of Complete Dissipation. Thomson –Tait Theorems

We assume that D̂ = 0 (there are no circulatory forces), and the dissipation matrix μ̂ is

nondegenerate and positive definite. We also assume that the matrix Ĉ is nondegenerate since
otherwise the equilibrium point is degenerate and its stability requires a separate analysis.

The conditions for stability of the equilibrium point can be represented in the form of Table 2,
which expresses the content of the well-known Thomson –Tait [56] (Kelvin) theorems for this
situation.

3. The General Case
In the general case, the stability analysis of an equilibrium point is usually carried out using a

pair of the most widespread criteria, which we present here for the system (A.1).
The Routh –Hurwitz criterion. To use it, we need to obtain the minors of the Hurwitz

matrix from the coefficients of the characteristic polynomial (A.3)

Γ =

∥∥∥∥∥∥∥∥∥∥∥∥

a1 1 0 0

a3 a2 a1 1

0 a4 a3 a2

0 0 0 a4

∥∥∥∥∥∥∥∥∥∥∥∥
.
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Table 2. Thomson–Tait [56] (Kelvin) stability conditions, as applied to the system (A.1).

Existence of additional terms
Stability conditions
(additional remarks)ω̂ μ̂

1 − − c1 > 0, c2 > 0

2 + −
1. c1 > 0, c2 > 0

2. c1 < 0, c2 < 0, ω2 >
(√

|c1|+
√
|c2|

)2

3 − +

c1 > 0, c2 > 0
(the equilibrium point

is asymptotically stable)

4 + +
c1 > 0, c2 > 0
(the equilibrium point
is asymptotically stable)

For all roots of the characteristic polynomial (A.3) with real coefficients to have a negative real
part, it is necessary and sufficient that all princial minors Δ2, . . . ,Δ4 of the matrix Γ be positive.

Noting that Δ4 = a4 ·Δ3, we obtain four inequalities in explicit form

a1 > 0, a4 > 0, Δ2 = a1a2 − a3 > 0,

Δ3 = a1a2a3 − a21a4 − a23 > 0.
(A.9)

The Lienard – Shepherd criterion. Combining inequalities (A.9), one can obtain a different
set of inequalities

ak > 0, k = 1, . . . , 4,

Δ3 = a1a2a3 − a21a4 − a23 > 0.
(A.10)

General scheme of stability analysis. It should be kept in mind that not all of these
inequalities play the same role in defining the stability region. In the parameter space α =
(α1, . . . , αm), on which the coefficients of the characteristic polynomial a1(α), . . . , a4(α) depend,
we single out the set

S(0) =
{
α | 0 < a4, 0 < a1a2a3 − a21a4 − a23

}
. (A.11)

In the general case, it is disconnected and is a union of its (intersecting) connectedness components:

S(0) = S1 ∪ S2 ∪ . . . ∪ Sl.

Proposition. The stability region of the equilibrium point of the system consists of one or several
connectedness components of the set S(0).

Proof. Consider two sets in the parameter space which are given by the relations

D+ = {α | 0 < a1(α), 0 < a2(α), 0 < a3(α)},
D(0) = {α | a1(α) = 0} ∪ {α | a2(α) = 0} ∪ {α | a3(α) = 0}.

According to (A.11), an arbitrary point α ∈ D(0) cannot belong to the set S(0). Hence, if Sk is

the connectedness component S(0), then it either entirely belongs to D+ or entirely lies outside D+.
�

Thus, the algorithm of stability analysis of the equilibrium point reduces to constructing the
set S(0) given by the pairs of inequalities

0 < a4, 0 < a1a2a3 − a21a4 − a23
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and by a subsequent elimination of those of its connectedness components which do not satisfy
the inequalities

0 < a1, 0 < a2, 0 < a3.

Remark. Instead of the three inequalities 0 < ak, k = 1, 2, 3, one can use a pair of inequalities
from the Routh –Hurwitz criterion

0 < a1, 0 < Δ2 < a1a2.

This result can also be obtained as a consequence of the general statement describing the
boundaries of the stability region, which is ascribed to Hurwitz:

the boundary of the stability region of an equilibrium point is given by the relations

Δn = anΔn−1 = 0,

0 < Δ1, . . . , 0 < Δn−2.

Its proof is based on Orlando’s formula (see [27])

Δn = (−1)
n(n+1)

2 λ1λ2 . . . λn

n∏
i<k

(λi + λk),

where λi are the roots of the characteristic polynomial.
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