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Abstract—This paper addresses the problem of the rolling of a spherical shell with a frame
rotating inside, on which rotors are fastened. It is assumed that the center of mass of the entire
system is at the geometric center of the shell.
For the rubber rolling model and the classical rolling model it is shown that, if the angular
velocities of rotation of the frame and the rotors are constant, then there exists a noninertial
coordinate system (attached to the frame) in which the equations of motion do not depend
explicitly on time. The resulting equations of motion preserve an analog of the angular
momentum vector and are similar in form to the equations for the Chaplygin ball. Thus, the
problem reduces to investigating a two-dimensional Poincaré map.
The case of the rubber rolling model is analyzed in detail. Numerical investigation of its
Poincaré map shows the existence of chaotic trajectories, including those associated with a
strange attractor. In addition, an analysis is made of the case of motion from rest, in which the
problem reduces to investigating the vector field on the sphere S2.
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1. INTRODUCTION

1. This paper is dedicated to the 150th birthday of renowned Russian mechanical engineer
and mathematician S.A. Chaplygin. A conference1) has been held in honor of this event in the
Russian city of Cheboksary. We note that S.A.Chaplygin made a considerable contribution to
various fields of science, including aeromechanics, fluid dynamics, nonholonomic mechanics, and
rigid body dynamics. His biography is set forth in detail in the book by Golubev [39]. In addition,
since 2002 the journal Regular and Chaotic Dynamics has been publishing English translations
of S.A. Chaplygin’s papers devoted to nonholonomic mechanics [29, 30, 30] and the dynamics of
vortex structures [32, 33].

Fig. 1. Sergei A.Chaplygin
(1869–1942).

In this paper we investigate a mechanical system with nonholonomic
constraints. Therefore, we consider briefly the contribution of Chaply-
gin to this area. Since the work of Hertz, nonholonomic mechanics has
been concerned mainly with the development of various principles and
forms of equations (the history of nonholonomic mechanics is reviewed
in detail in [24, 25]). The contribution of Chaplygin is that, in addition
to the development of a new form of equations and the theory of the last
multiplier, he posed a number of insightful problems, which continue to
be of much current interest and are essential to mechanics and mobile
robotics.

We recall the standard nonholonomic systems which were introduced
in the papers by S.A.Chaplygin: the Chaplygin ball, the Chaplygin
sleigh, and the Chaplygin top. We also mention an unpublished paper
by Chaplygin on the nonholonomic system of two coupled bodies (a ball
with a pendulum inside), which was discussed in [16].

The ideas of S.A. Chaplygin owe their further development in
nonholonomic mechanics primarily to the work of V.V.Kozlov [44], in which various generalizations
of Chaplygin’s problems are discussed. In addition, his work highlights the key role of various tensor
invariants in analyzing the behavior of nonholonomic systems, in particular, it shows an obstruction
to the existence of an invariant measure. Later, these ideas were also developed in [20, 27, 28], which
formed the general idea of the hierarchy of dynamical behavior of nonholonomic systems.

2. Let us consider in more detail the Chaplygin ball problem. We recall that the Chaplygin
ball is a spherical rigid body in which the principal moments of inertia are different and the
center of mass is at the geometric center. For the first time this problem was explicitly integrated
by S.A. Chaplygin [29] in 1903. In this case, the equations of motion have an invariant measure,
preserve energy and the angular momentum vector referred to the axes of a fixed coordinate system.
This case is similar to the Euler case in rigid body dynamics and can be exactly reduced to it if
the angular momentum lies in the direction perpendicular to the horizontal plane [14, 29].

1)http://umu.chuvsu.ru/chaplygin2019
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However, in contrast to the Euler case, (reduced) equations of motion are represented in Hamil-
tonian form only after rescaling time [22]. An explicit representation in conformally Hamiltonian
form is presented in [23], and some justification of the found representation is discussed in [2]. An
analysis of trajectories of the point of contact of the Chaplygin ball on a plane is presented in [13].

3. In connection with the development of the methods of nonholonomic mechanics and possible
applications of rolling balls to robotics, various versions of the Chaplygin ball rolling problem are
considered:

— addition of gyrostatic momentum [48] and the Brun field [44];

— rolling in a spherical suspension (BMF system) [9, 10], a ball suspension [14, 37] and on a
uniformly rotating plane [3, 11, 35, 51];

— addition of a fluid-filled cavity to the ball [21].

We also highlight a new spectrum of problems which involve considering another nonholonomic
model. In addition to assuming that the velocity of the point of contact is zero, this model assumes
that the projection of the angular velocity onto the normal to the plane is also zero (i.e., there
is no spinning). In [34] it is proposed to implement this model by coating the rolling body with
sufficiently soft rubber (see also [42]). This is why it is also called the rubber rolling model.

Within the rubber model the Chaplygin ball rolling problem is integrable and is addressed
in [19, 27]. It has turned out that in the case of the Chaplygin ball there exists an interrelation
between the rubber rolling model and the standard (classical) model of rolling without slipping
with the possibility of spinning: the trajectories of the reduced system for the Chaplygin ball turn
out to be transversal (to each other) windings of the same tori [8, 52].

4. Of particularly great interest from the viewpoint of control theory and various applications [12]
are problems of the rolling of a ball with periodically varying mass distribution, which is caused by
the control mechanism placed inside the ball [41, 43, 49]. The qualitative analysis of such systems is
complicated by the fact that they reduce to investigating a Poincaré map, which defies visualization
(since its dimension is greater than three). Moreover, the reduced equations of motion explicitly
depend on time, which makes the stability analysis of particular motions difficult.

One of the simplest examples of such systems is the (toy) beaver ball2) (see Fig. 2). It is a
spherical shell inside which a rigid body (rotor, frame) rotates with constant angular velocity
about the axis passing through the geometric center of the sphere. The body is fastened in such a
way that its center of mass does not lie on the axis of rotation. As a result, the center of mass of the
entire system is displaced relative to the geometric center of the shell and executes periodic motion.
In [41] this influence of the rigid body is modeled using a material point which moves in a circle,
and the analysis of the equations of motion thus obtained is confined to numerically constructing
the trajectory of the point of contact and the time dependence of the angular velocity of the ball
for fixed initial conditions and parameters.

Fig. 2. Beaver ball in dismantled form.

It has recently been shown [4–6, 43] that nonholonomic systems with periodically varying mass
distribution may exhibit motions where the velocity of the carrying body increases indefinitely.
In contrast to Hamiltonian systems (see, e. g., [47]), the indefinite increase in the velocity is
characteristic of systems that reduce to a two-dimensional map which is no longer area-preserving.

2)The use of the word beaver is due to the fact that commercial variants have a furry toy fastened on the outer
side of the sphere.
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5. In this paper, we consider the problem of the rolling of a dynamically symmetric spherical shell
with a frame (rigid body) which rotates along its symmetry axis and on which rotors (gyrostats)
are fastened. It is assumed that the center of mass of the entire system is at the geometric center
of the ball. This case arises, for example, if one places the rigid body inside the shell of the beaver
ball in such a way that its center of mass is at the geometric center of the shell (balanced beaver
ball).

Generally speaking, the analysis of dynamical equations of an (unbalanced) beaver ball is
complicated by the large dimension of the Poincaré map. For the system under consideration, the
problem is reduced, by using additional integrals, to investigating of a two-dimensional Poincaré
map. We present the main results obtained in this study:

— Equations of motion are obtained which describe the rolling without slipping (for the classical
rolling model and the rubber rolling model) of a robot with a spherical shell. In the case of
constant velocity of rotation of the shell relative to the frame (capsule), a representation of the
equations of motion in the form of an autonomous system is found which is a generalization
of the nonholonomic system in the Chaplygin ball problem (see Section 2). In this case,
however, these equations have no continuous invariant measure and no energy integral.

— Conservation laws (first integrals) are found and it is shown that on the corresponding integral
surface (which turns out to be three-dimensional) the analysis of the reduced system can be
carried out using a two-dimensional Poincaré map (see Section 3).

— A qualitative analysis for the rubber rolling model is carried out in the case of motion of
the system from rest. In particular, a stability analysis is made of partial solutions that
correspond to the fixed points of the reduced system. The asymptotic nature of the behavior
of the system in a neighborhood of these solutions suggests that that there is no continuous
invariant measure. This is indicative of a considerable difference of this system from the
Chaplygin ball problem and its various generalizations (see Section 4).

— Partial solutions are found for which the internal frame (capsule) remains fixed relative to the
supporting surface, and conditions for their stability (gyroscopic stabilization) are analyzed
(see Section 5.1).

— It is shown that at certain parameter values the system may exhibit irregular (chaotic)
behavior. In this case, a strange attractor arises in the phase space of the reduced system
(see Section 5.2).

The beaver ball is of interest to children, since it exhibits interesting dynamical behavior — it
moves chaotically on the plane and behaves particularly strangely when colliding with obstacles.
For the system considered in this paper, problems of chaotic behavior in the reduced phase space
and of the behavior of the point of contact are only touched upon. Yet these problems, which are
undoubtedly of interest, require a more detailed investigation of the resulting system.

2. EQUATIONS OF MOTION

Consider a system moving on a horizontal plane and consisting of several bodies (see Fig. 3):

1) a dynamically symmetric spherical shell in which the center of mass is at the geometric center;

2) a frame,3)a rigid body with an arbitrary mass distribution, which is fastened inside the shell
by means of cylindrical hinges. The frame is able to rotate relative to the shell with a given
angular velocity Ω(t);

3) n dynamically symmetric rigid bodies (rotors) which are fastened on the frame.

We assume that the frame and the rotors are located inside the spherical shell in such a way that
the center of mass of the entire system is at the geometric center of the shell, that is, we consider
a balanced case.

3)As a rule, it is the frame that is of the greatest technical importance in mobile devices, since devices for
observations, life-support capsules etc. can be connected with it. Therefore, its stabilization relative to the fixed
coordinate system is a high-priority problem.
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shell

frame

rotor

Fig. 3. Structure of the system for one rotor (n = 1).

Suppose that the frame and the rotors execute the following motion relative to the shell:

— the frame rotates with angular velocity Ω(t), given as a function of time, about the axis of
dynamical symmetry of the shell. If the shell is homogeneous, then any straight line passing
through the geometric center of the shell can be chosen as the axis of rotation of the frame;

— the rotors rotate (relative to the frame) with angular velocity φ̇i(t), given as a function of
time, about its axis of dynamical symmetry ni.

We define two coordinate systems (see Fig. 4):

— an inertial coordinate system OXY Z with origin at some point of the plane and with the
axis OZ perpendicular to it.

— a noninertial coordinate system Cx1x2x3, which is attached to the frame, so that the origin
C coincides with the center of mass of the system.

Fig. 4. The system on the plane.

A distinctive feature of this system is the fact that the mass distribution remains constant in
the coordinate system Cx1x2x3. This is due to the fact that the rotors and the shell in this system
rotate in a prescribed manner about their symmetry axes (in contrast to the coordinate system
attached to the shell).

Configuration space. Let RC = (Xc, Yc, Zc) be the coordinates of the center of mass of the
system in the inertial coordinate system OXY Z and let S be the matrix of rotation of the fixed
axes relative to the coordinate system attached to the frame Cx1x2x3.

Let us parameterize S by α, β and γ, the unit vectors of the inertial coordinate system referred
to the axes Cx1x2x3:

S =

⎛
⎝
α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

⎞
⎠ ∈ SO(3),

where the unit vector γ defines the normal to the plane, i.e., it is directed along the axis OZ.
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Remark 1. In this case, obvious geometric relations expressing the condition of orthogonality of
the matrix S are satisfied:

(α,β) = (β,γ) = (γ,α) = 0,

α2 = β2 = γ2 = 1.

Since the motion of the shell and the rotor relative to the frame is defined at any instant of
time, the pair RC , S uniquely defines the configuration of the system. Thus,

N = {RC ,S} ≈ R
3 × SO(3)

is the configuration space of this system.

Remark 2. Here and in what follows, we denote vectors by bold italic a, b, . . . , and write their
scalar and vector product as (a, b) and a× b, respectively. The sign ̂ above the vector denotes
the skew-symmetric matrix â = εijkak, where εijk is the Levi-Civita symbol. The sign ⊗ denotes
a tensor product, i. e., in matrix form a⊗ b = ||aibj ||. Boldface upright font is used to denote the
matrices: A,B, . . . .

Quasi-velocities. We parameterize the tangent space TN by the velocity of the center of mass
of the system, v = (v1, v2, v3), and by the angular velocity of the frame, ω = (ω1, ω2, ω3), which are
referred to the moving axes Cx1x2x3. They are expressed in terms of configuration variables and
their derivatives as follows (see [17] for details):

ω̂ = ṠST , v = SṘC ,

ω̂ =

⎛
⎜⎝

0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞
⎟⎠ .

Here and in what follows (unless otherwise specified), all vectors are referred to the moving axes
Cx1x2x3.

Models of rolling and constraint equations. Two nonholonomic models of a shell rolling
on a plane are possible:

1. The model of rolling without slipping (classical rolling model), in which the velocity at the
contact point of the shell is zero:

f = v + aγ ×
(
ω −Ω(t)

)
= 0, (2.1)

where a is the radius of the spherical shell.

2. The model of rolling without slipping and spinning (rubber rolling model), which, in addition
to assuming zero velocity of the point of contact, assumes that there is no spinning of the
shell relative to γ, the normal to the plane at the point of contact P :

f0 = (ω −Ω(t),γ) = 0. (2.2)

As a rule, this model is called the rubber rolling model [27, 34] to emphasize that, by coating
the body with rubber, one can ensure a proper contact with the plane.

Thus, in the coordinate system Cx1x2x3 nonholonomic constraints are given by relations that
are inhomogeneous in the velocities v and ω.

Kinetic energy. The kinetic energy in the coordinate system Cx1x2x3 can be represented as

T =
1

2
mv2 +

1

2
(ω, Iω) + (k(t),ω),

where m and I are, respectively, the mass and the tensor of inertia of the system, and k(t) is the
vector of the total gyrostatic momentum of the rotors and the frame, which is expressed in terms
of their angular velocities (see relations (A.3)):

k(t) =
n∑

i=1

jiφ̇i(t)ni − JsΩ(t),

where Js and ji are the moments of inertia of the shell and the ith rotor, respectively.
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We direct the axes of the coordinate system Cx1x2x3 along the principal axes of inertia of the
system, thus, I = diag(I1, I2, I3) is a diagonal matrix. A derivation of relations for nonholonomic
constraints and the kinetic energy of the system is presented in Appendix A.

Equations of motion. In the general case, we represent the equations of motion in the form
of Poincaré – Suslov equations (for details, see [18, 38]):

d

dt

(
∂T

∂ω

)
+ ω × ∂T

∂ω
+ v × ∂T

∂v
+ γ × ∂T

∂γ
=

3∑
i=1

λi
∂fi
∂ω

+ λ0
∂f0
∂ω

,

d

dt

(
∂T

∂v

)
+ ω × ∂T

∂v
=

3∑
i=1

λi
∂fi
∂v

+ λ0
∂f0
∂v

,

(2.3)

where λ = (λ1, λ2, λ3) and λ0 are the undetermined multipliers defining the reaction of the
constraints (2.1) and (2.2), respectively.

Remark 3. The center of mass of the entire system coincides with the geometric center, therefore,
the system of equations (2.3) contains no terms with potential of the gravitational field (since
U = const).

Differentiating the constraint (2.1), we find from the last equation of (2.3):

λ = −maγ ×
(
ω̇ − Ω̇(t)

)
−maγ̇ ×

(
ω −Ω(t)

)
−maω ×

(
γ × (ω −Ω(t))

)
.

Substituting λ thus found into the first equation of (2.3) and writing a kinematic relation for the
normal vector γ, we obtain

Ĩω̇ =
(
Ĩω + k(t)

)
× ω +ma2

(
ω −Ω(t),γ

)
γ × ω + λ0γ

+ma2(ω,γ)γ ×Ω(t) +ma2γ ×
(
Ω̇(t)× γ

)
− k̇(t),

Ĩ = I+ma2(γ2 − γ ⊗ γ),

γ̇ = γ × ω.

(2.4)

where Ĩ is the tensor of inertia of the system relative to the point of contact P .
In order to obtain equations of motion in the classical rolling model in the system (2.4), we need

to set λ0 = 0, and in the case of the rubber rolling model λ0 is defined from the constraint (2.2).

Differentiating the constraint (2.2) with respect to time, we obtain

(Ĩω̇, Ĩ−1γ)− (Ω(t),γ × ω) + (Ω̇(t),γ) = 0.

From this equation, taking (2.4) into account, we find the undetermined multiplier λ0 as a function
of the angular velocity ω and of the normal γ:

λ0 = −

(
Ĩ−1γ,

(
Ĩω + k(t)

)
× ω +ma2

(
ω −Ω(t),γ

)
γ × ω +W

)

(Ĩ−1γ,γ)

+
(Ω(t),γ × ω) + (Ω̇(t),γ)

(Ĩ−1γ,γ)
,

W = ma2(ω,γ)γ ×Ω(t) +ma2γ ×
(
Ω̇(t)× γ

)
− k̇(t).

(2.5)

We see that Eqs. (2.4) are closed relative to the variables ω, γ and form a reduced system.

Reconstruction of dynamics. From the known functions ω(t) and γ(t) the orientation of the
frame is described by the following system of equations:

α̇ = α× ω, β̇ = β × ω. (2.6)

The equations of motion for the coordinates of the contact point RP = (X,Y, 0) of the shell in
the fixed coordinate system OXY Z have the form

Ẋ = a
(
β,ω −Ω(t)

)
, Ẏ = −a

(
α,ω −Ω(t)

)
. (2.7)
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In the noninertial coordinate system Cx1x2x3 (attached to the frame) the equations of
motion (2.4), (2.6) and (2.7) have a simpler form than the equations in the coordinate system
attached to the shell, which makes them amenable to a detailed qualitative analysis.

Below, we will consider separately the case of the rubber rolling and that of the classical rolling
of the ball, since the conservation laws for them are different.

Remark 4. In this case, the symmetry group of the entire system is the group of motions of the
plane SE(2). We see that the components of the vectors ω and γ are its invariants. Consequently,
choosing the suitable coordinate system Cx1x2x3, we have in fact performed a reduction by
symmetries.

3. CONSERVATION LAWS

3.1. Rolling of the Shell Without Slipping and Spinning (Rubber Model)

Let us define the angular momentum:

M = γ ×
(
Ĩω −K(t)

)
, K(t) = k(t)−ma2Ω(t), (3.1)

which lies in the horizontal plane OXY :

(M ,γ) = 0.

The equations of motion for M and γ, taking the constraint (2.2) into account, can be represented
as

Ṁ = M × ω, γ̇ = γ × ω,

ω = A

(
M ×Aγ

(Aγ,γ)
−K(t) + Zγ

)
, Z =

(Ω(t) +AK(t),γ)

(Aγ,γ)
,

(3.2)

where A = diag(a1, a2, a3) = (I +ma2E)−1 is the diagonal matrix.
As can be seen, the angular momentum M is constant in the fixed coordinate system OXY Z,

and hence the reduced system (3.2) possesses the following integrals of motion:

F0 = γ2, F1 = (M ,γ), F2 = M2,

and, according to the definition of M and γ, we obtain F0 = 1, F1 = 0.
Now suppose that the angular velocity of the frame and the generalized gyrostatic momentum

do not depend explicitly on time:

Ω = const, K = const.

Then the problem reduces to investigating the autonomous system of Eqs. (3.2), which describes
the flow on the three-dimensional manifold parameterized by the value of the integral F2 = f =
const:

M 3
f = {(M ,γ) | γ2 = 1, (M ,γ) = 0,M2 = f},

which is a bundle of unit tangent vectors [40].

Remark 5. If Ω �= 0, then the nonholonomic constraints (2.1) and (2.2) are inhomogeneous in
the velocities. As is well known [26, 35], the equations of motion (3.2) generally have no energy
integral for such systems. Nevertheless, if A is an axisymmetric matrix and the vectors Ω and
K are directed along its symmetry axis, then the system (3.2) describes the rolling of a balanced
Routh sphere with a rotor. In this case, the system (3.2) has an energy integral and an invariant
measure (i. e., it is integrable by quadratures [20, 45]) in the rubber and the classical rolling model.
We will not consider this case in what follows.

For the system (3.2) to be integrable by the Euler – Jacobi theorem, we need an additional
integral and an invariant measure. Below it will be shown that in the general case the system (3.2)
has chaotic trajectories, which suggests that it has no analytic integrals. In addition, simple and
strange attractors will be found, and so, in the general case, there is no invariant measure with
continuous density.

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 5 2019



568 BIZYAEV et al.

3.2. Rolling of the Shell Without Slipping (Classical Model)

It turns out that, in the case of the classical rolling model there also exists angular momentumM ,
which is constant in the fixed coordinate system OXY Z. We represent it in the following form:

M = Ĩω +K(t)− d(Ω(t),γ)γ, K(t) = k(t)− dΩ(t), d = ma2.

The reduced equations of motion for M and γ have the form

Ṁ = M × ω, γ̇ = γ × ω,

ω = A(M −K(t) + Zγ), Z =

(
A(M −K(t)) −Ω,γ

)
d−1 − (Aγ,γ)

,
(3.3)

where A = (I+ma2E)−1 is the diagonal matrix.

Thus, the system possesses the following integrals of motion:

F0 = γ2, F1 = (M ,γ), F2 = M2,

where F0 = 1 and, in contrast to the rubber model, in the general case one has F1 �= 0.

If one assumes the angular velocity of the frame and the gyrostatic momentum to be constant
(Ω = const, K = const), then, as in the rubber rolling model, the problem reduces to investigating
the autonomous system of equations (3.2), which describes the flow on the three-dimensional
manifold parameterized by the values of the integrals F1 = c = const and F2 = f = const:

M 3
c,f = {(M ,γ) | γ2 = 1, (M ,γ) = c,M2 = f}.

For the system (3.3) to be integrable by the Euler – Jacobi theorem, we need an additional integral
and an invariant measure.

3.3. Reconstruction for Fixed Values of First Integrals

In this case, by choosing the orientation of the axes of the fixed coordinate system one can
eliminate the equations of motion (2.6) for the unit vectors α and β (i. e., perform reduction). We
describe this procedure in more detail.

Let M �= 0 and M ∦ γ (the latter condition is automatically satisfied for the rubber rolling
model, since (M ,γ) = 0). Then on the fixed level set of the first integrals M2 = f , (M ,γ) = c we
choose the unit vectors α and β in the form

α = −M − cγ√
f − c2

, β =
M × γ√
f − c2

.

This yields equations for the trajectory of the point of contact in the form

Ẋ =
a√

f − c2
(M × γ,ω −Ω), Ẏ =

a√
f − c2

(M − cγ,ω −Ω),

where ω is expressed explicitly in terms of M and γ for the rubber rolling model from relation (3.2),
and for the classical rolling model, from the formulae (3.3). For the rubber rolling model, in these
relations we also need to set c = 0.

We note that in both cases (the rubber rolling model and the classical rolling model) preservation

of the squared momentum F2 = M2 leads to boundedness of the trajectories of the reduced
system (3.2). Thus, there are no trajectories in which the shell accelerates constantly. In addition, the
existence of additional integrals allows one to reduce the problem to investigating a two-dimensional
Poincaré map, to single out various partial solutions and to study them. Below we consider in more
detail the rubber model of a rolling shell.
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4. MOTION OF THE SYSTEM FROM REST FOR THE RUBBER MODEL
OF A ROLLING SHELL

Consider the system (3.2) (i.e., the rubber rolling model) on the zero level set of the integral
F2 = M2 = 0 and at constant values Ω = const, K = const. It follows from F2 = 0 that each
component of the vector of momentum M = 0 is zero.

This case can be physically realized, for example, if one begins to increase the angular velocity
of the frame Ω(t) and the gyrostatic momentum K(t) from rest (ω = Ω = K = 0) to some fixed
values Ω = const, K = const. In this case, the value M = 0 will remain unchanged, since F2 = M2

is also a first integral if Ω(t) and K(t) depend explicitly on time.
In this case the reduced system describes a vector field on a two-dimensional sphere:

M 2
0 = {(M ,γ) | M = 0,γ2 = 1} ≈ S

2,

which has the form

γ̇ = γ ×A (Zγ −K) , Z =
(Ω+AK,γ)

(Aγ,γ)
. (4.1)

The remaining equations of motion for defining the orientation of the frame and the trajectory
of the point of contact can be represented as

α̇ = α×A (Zγ −K) , β̇ = β ×A (Zγ −K) ,

Ẋ = a
(
β,A (Zγ −K)−Ω

)
, Ẏ = −a

(
α,A (Zγ −K)−Ω

)
.

(4.2)

Thus, at the first stage the problem reduces to investigating the two-dimensional autonomous
system (4.1), in which chaotic trajectories are known to be absent.

When Ω = 0, the system (4.1) describes a particular case of generalization of the problem of the
rubber Chaplygin ball with a gyrostat [8, 27] and admits the first integral

(AK,γ)2

(Aγ,γ)
= const.

In the general case, the level surface of this integral is an elliptic cone, so that in this case all
trajectories of the system (4.1) on the sphere γ2 = 1 turn out to be closed. Below it will be shown
that, if Ω �= 0, then the system (4.1) has asymptotically stable equilibrium points and limit cycles.

Remark 6. The system (4.1) possesses the symmetry γ → −γ. As a result, isolated fixed points
occur in pairs.

4.1. The Absence of Gyrostatic Momentum K = 0

If K = 0, then the system (4.1) has an additional integral

F3 = (Aγ,γ).

Remark 7. According to (3.1), this case cannot be realized without gyrostatic momentum k.

In this case, after rescaling time by

dt → (Aγ,γ)

(Ω,γ)
dt (4.3)

the equations of motion can be reduced to the Euler equations for the motion of a rigid body with
a fixed point. Then, as is well known (see, e. g., [17]), there are six isolated fixed points on the
Poisson sphere:

Γ1,2 = (±1, 0, 0), Γ3,4 = (0,±1, 0), Γ5,6 = (0, 0,±1). (4.4)

If none of the angular velocity components of the frame is zero Ωi �= 0, where i = 1, 2, 3, then
the following proposition holds for points Γ1, . . . ,Γ6.

Proposition 1. Let a1 < a2 < a3. Then the fixed points Γ3,4 of the system (4.1) are orbitally
unstable, and Γ1,2 and Γ5,6 are orbitally stable. They correspond to the case in which the frame
rotates along the principal axis of inertia and the point of contact of the shell traces out a circle.
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Proof. The stability property follows from the Euler case in rigid body dynamics (see, e. g., [17]).
We show that at the equilibrium points the shell moves in a circle, as illustrated by Γ5.

From (4.2) we obtain

α =
(
sin(Ω3t+ φ0), cos(Ω3t+ φ0), 0

)
, φ0 = const,

β =
(
− cos(Ω3t+ φ0), sin(Ω3t+ φ0), 0

)
.

The equations for the trajectory of the point of contact can be represented as

Ẋ = aΩ1 cos(Ω3t+ φ0)− aΩ2 sin(Ω3t+ φ0),

Ẏ = aΩ2 cos(Ω3t+ φ0) + aΩ1 sin(Ω3t+ φ0).

Explicitly integrating them, we find that the point of contact moves in a circle:

(
X(t)− x0

)2
+

(
Y (t)− y0

)2
= a2

Ω2
1 +Ω2

2

Ω2
3

, x0, y0 = const. �
In the system (4.1) we can single out the plane

Σ1 = {(Ω,γ) = 0},
in which the time rescaling (4.3) has a singularity. The intersection of Σ1 with the Poisson sphere
defines a circle filled by fixed points of the system (4.1): asymptotically stable Σ1

s or asymptotically
unstable Σ1

u:
Σ1
s = {(Ω,γ) = 0, (Aγ,γ ×Ω) > 0},

Σ1
u = {(Ω,γ) = 0, (Aγ,γ ×Ω) < 0}.

At the equilibrium points Σ1
s and Σ1

u the frame is at rest relative to the fixed coordinate system,
and the point of contact moves along a straight line.

As in the Euler case [17], the integral curves of the system ζ are an intersection of the sphere
γ2 = 1 and the ellipsoids F3 = const. If the integral curve ζ does not intersect Σ1, then it coincides
with the periodic trajectory of the system in the Euler case. Conversely, if it intersects Σ1, then
the trajectory asymptotically tends to the equilibrium point Σ1

s ∪ ζ. A typical view of trajectories
on the Poisson sphere and of the point of contact of the shell on the plane for the case K = 0 is
presented in Fig. 5.

4.2. The Case K �= 0

Let the gyrostatic momentum be directed along one of the principal axes:

K = (0, 0,K3). (4.5)

Let us consider how the trajectories of the system (4.1) behave as |K3| increases. In this case,
from (4.4), at all values of K3, only the following equilibrium points are preserved:

Γ5,6 = (0, 0,±1). (4.6)

Proposition 2. Depending on the values of

A1 = a1a3K3 + (a1 − a3)Ω3, A2 = a2a3K3 + (a2 − a3)Ω3

the equilibrium points (4.6) of the system (4.1) with nonzero gyrostatic momentum (4.5) can be of
the following types: a saddle (A1A2 < 0) or a weak focus (A1A2 > 0). Depending on the value of

B = K3Ω1Ω2

(
(a2 − a3)

2A2
1 − (a1 − a3)

2A2
2

)
,

the focus is:

— stable if
B

A1
> 0;4)

— unstable if
B

A1
< 0.

4)Since in the case of a weak focus both quantities A1 and A2 have the same signs, the signs of the quantities B
A1

and B
A2

coincide.
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a)

b)
c) d)

Fig. 5. A typical view of trajectories on the Poisson sphere and of the point of contact for K = 0
and the fixed parameters Ω = (4, 2, 1), A = diag(0.5, 0.4, 0.3), a = 1 for the initial position of the point

of contact X(0) = 0, Y (0) = 0. The initial conditions for the unit vectors are: b) α(0) = (
√

8949
95

, 2
√

19
95

, 0),

β(0) = (− 9
√

19
475

,− 9
√

8949
950

,−
√

19
10

), γ(0) = ( 1
25
,
√

471
50

,− 9
10
); c) α(0) = (0,−1, 0), β(0) = (

√
39

20
, 0,− 19

20
), γ(0) =

( 19
20
, 0,

√
39

20
); d) α(0) = (0,−1, 0), β(0) = (0, 0,−1), γ(0) = (1, 0, 0).

Proof. The equations of motion in a neighborhood of Γ6 (the analysis of the equilibrium point Γ5

is carried out analogously) have, up to quadratic terms, the form

γ̇1 = −A2

a3
γ2 −

(a2 − a3)Ω1

a3
γ1γ2 −

(a2 − a3)Ω2

a3
γ22 ,

γ̇2 =
A1

a3
γ2 +

(a1 − a3)Ω1

a3
γ1γ2 +

(a1 − a3)Ω2

a3
γ21 .

As can be seen, if A1A2 < 0, then the equilibrium point under consideration is of saddle type.

If A1A2 > 0, then the definition of stability requires considering quadratic terms (since for a
linear system the equilibrium point Γ6 is of center type). For this, we define a new variable and
rescale time as follows:

γ1 =
√

A1A2
x

A1
, γ2 = y, t =

a3√
A1A2

τ.

The equations of motion in the new variables become

x′ = −y − (a2 − a3)Ω1√
A1A2

xy − (a2 − a3)Ω2

A2
y2,

y′ = x+
(a1 − a3)Ω2

A1
xy +

(a1 − a3)Ω1A2√
A1A2A1

x2,

where the prime denotes the derivative with respect to τ . In this case, the type and the stability
of the equilibrium point for this system are defined by the quantity (for details, see [1, 46]):

L1 =
B

A1
.
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If L1 �= 0, then the above-mentioned equilibrium point is a (weak) focus, which is stable if L1 < 0
and unstable if L1 > 0. The case L1 = 0 requires a separate analysis. �

In this case, the relation (Ω,γ) = 0 does not define the family of fixed points. However, at
sufficiently small |K3| there are two types of isolated equilibrium points.

The isolated equilibrium points of the first type are

Δ = {γ1 = 0, γ2 = sinϕ, γ3 = cosϕ},

δ1 =

{
ϕ =

arcsin(κ1)− ν1
2

}
, δ2 =

{
ϕ =

arcsin(κ1)− ν1
2

+ π

}
,

δ3 =

{
ϕ = −arcsin(κ1) + ν1

2
+

π

2

}
, δ4 =

{
ϕ = −arcsin(κ1) + ν1

2
+

3π

2

}
,

κ1 =
(a2 − a3)Ω3 + 2a2a3K3√

Ω2
2 +Ω2

3(a3 − a2)
, ν1 = arcsin

(
Ω2
3√

Ω2
2 +Ω2

3

)
.

These equilibrium points exist if |κ1| < 1.

The isolated equilibrium points of the second type are

Θ = {γ1 = sinϕ, γ2 = 0, γ3 = cosϕ},

θ1 =

{
ϕ =

arcsin(κ2)− ν2
2

}
, θ2 =

{
ϕ =

arcsin(κ2)− ν2
2

+ π

}
,

θ3 =

{
ϕ = −arcsin(κ2) + ν2

+

π

2

}
, θ4 =

{
ϕ = −arcsin(κ2) + ν2

2
+

3π

2

}
,

κ2 =
(a1 − a3)Ω3 + 2a1a3K3√

Ω2
1 +Ω2

3(a3 − a1)
, ν2 = arcsin

(
Ω2
3√

Ω2
1 +Ω2

3

)
,

which exist if |κ2| < 1.

Depending on the system parameters, the conditions for stability of these equilibrium points are
represented in the form of extremely cumbersome relations. Therefore, we illustrate the evolution
of the phase portrait of the system (4.1) with increasing |K3| for the fixed parameters Ω = (4, 2, 1),
A = diag(0.5, 0.4, 0.3) and a = 1 (see Figs. 6–8).

If 0 < κ2 < κ1 < 1, then on the Poisson sphere there are ten isolated fixed points of different
types (see Fig. 6):

— four saddles (θ1, θ2, δ3, δ4);

— two stable foci (θ3, θ4);

— two unstable nodes (δ1, δ2);

— two slow stable foci (Γ5, Γ6).

We note that, in this case, the unstable and stable manifolds of equilibrium points δ3, δ4 and
the central manifold at δ1, δ2 form a closed contour.

Let κ2 < 1 < κ1. Then the equilibrium points δ1, δ2, δ3 and δ4 disappear, and an unstable limit
cycle arises from the closed contour (see Fig. 7). If 1 < κ2 < κ1, then of all the equilibrium points
the system (4.1) has only Γ5 and Γ6 and the unstable limit cycle (see Fig. 8).

A detailed classification of phase portraits on the Poisson sphere and of trajectories of the contact
point depending on the system parameters remains an open problem.
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a) b)
c)

Fig. 6. Trajectories for K3 = 0.3 on the Poisson sphere, its involute

(
ϕ =

π

4
+ arctan

γ1
γ2

)
and the

trajectory of the contact point with the fixed initial conditions α(0) = (1, 0, 0), β(0) =
(
0, 3

√
11

50
,− 49

50

)
,

γ(0) =
(
0, 49

50
, 3

√
11

50

)
, X(0) = 0, Y (0) = 0.

a) b)

c)

Fig. 7. Trajectories for K3 = 0.52 on the Poisson sphere, its involute

(
ϕ =

π

4
+ arctan

γ1
γ2

)
and the

trajectory of the contact point with the fixed initial conditions α(0) = (1, 0, 0), β(0) =
(
0,

√
79

40
,− 39

40

)
,

γ(0) =
(
0, 39

40
,
√

79
40

)
, X(0) = 0, Y (0) = 0. The limit cycle is shown in blue.

5. REGULAR AND CHAOTIC MOTIONS FOR THE RUBBER MODEL
OF A ROLLING SHELL

5.1. Straight-line Motions

The reduced system (3.2) possesses a degenerate one-parameter family of the simplest equilib-
rium points for which ω = 0:

Σ1 =
{
M = γ0 ×K, γ = γ0 | (Ω,γ0) = 0, γ2

0 = 1
}
, γ0 = const. (5.1)

In this case, the frame is at rest relative to the fixed coordinate system OXY Z, and the contact
point P of the spherical shell traces out a straight line on the plane OXY .

Remark 8. From the viewpoint of technical and engineering applications, these solutions are of
particularly great importance, since it is in this case that the stabilization of the frame (and the
devices connected with it) relative to the fixed coordinate system is achieved. A similar method of
gyroscopic stabilization is used in a segway, which is a frame connected with a wheel pair (instead
of a spherical shell).
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a) b) c)

Fig. 8. Trajectories for K3 = 3 on the Poisson sphere, its involute

(
ϕ =

π

4
+ arctan

γ1
γ2

)
and the trajectory of

the contact point with the fixed initial conditions α(0) = (1, 0, 0), β(0) =
(
0,

√
79

40
,− 39

40

)
, γ(0) =

(
0, 39

40
,
√

79
40

)
,

X(0) = 0, Y (0) = 0. The limit cycle is shown in blue.

Let us analyze the stability of the found solutions. The characteristic polynomial of the linearized
system (3.2) in a neighborhood of the equilibrium points Σ1 is represented as

P (λ) = λ3P3(λ),

P3(λ) = λ3 +
(Aγ0,γ0 ×Ω)

(Aγ0,γ0)
λ2 +

detA

(Aγ0,γ0)

(
(K,γ0)

2 − (K,A−1Ω)
)
λ

+
detA

(Aγ0,γ0)
(K,γ0)(K,γ0 ×Ω).

(5.2)

We see that the last term in P3(λ) vanishes for K = cΩ, where c = const (i.e., K ‖ Ω). In this

case, the family Σ1 lies entirely on the fixed level set of the integral M 3
f , f = K2. In this case, the

characteristic polynomial (5.2) has the form

P (λ) = λ4P2(λ),

P2(λ) = λ2 +
(Aγ0,γ0 ×Ω)

(Aγ0,γ0)
λ− detA

(Aγ0,γ0)
(K,A−1Ω).

In the general case (K ∦ Ω), the family Σ1 is transverse to the level surfaces of the integrals M 3
f .

Thus, the fixed points from Σ1 turn out to be isolated on M 3
f . Next, we consider in detail only the

case K ⊥ Ω, since calculations simplify considerably in this case. A detailed analysis of all possible
cases requires a separate study.

The case K ⊥ Ω. The normal vector for the equilibrium points Σ1 can be represented as

γ0 = c1K + c2K ×Ω. (5.3)

Next, from the geometric integral and the integral F2 = f we find (taking (Ω,K) = 0 into account):

K2(c21 + c22Ω
2) = 1, c22K

4Ω2 = f.

Solving this system for the coefficients c1 and c2, we obtain
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Proposition 3. If f < K2, then on each level surface of the first integrals M 3
f there are four

isolated equilibrium points Σ1:

M 3
f ∩Σ1 = {σ+ ∪ σ− ∪ δ+ ∪ δ−},

σ± =

{
c1 = ±

√
K2 − f

K2
, c2 =

√
f

K2
√
Ω2

}
,

δ± =

{
c1 = ±

√
K2 − f

K2
, c2 = −

√
f

K2
√
Ω2

}
.

When f = K2, there are two of these equilibrium points and the family Σ1 touches M 3
f .

According to the Routh –Hurwitz criterion, for an equilibrium point to be stable, it is necessary
that the free coefficient in the polynomial P3(λ) be positive. In this case, after substituting (5.3)
into the characteristic polynomial (5.2) and after abbreviating the positive polynomial, we find the
stability condition:

c1c2 < 0.

This yields the following proposition.

Proposition 4. On the fixed level set of the integrals M 3
f , f < K2 the equilibrium points σ+ and

δ− are unstable regardless of the parameters.

Further, using the Routh –Hurwitz criterion, we find that, for σ− and δ+ to be stable, the
following inequalities must be satisfied:

(
c1AK + c2A(K ×Ω), c1Ω×K + c2Ω

2
)
> 0,

(
c1AK + c2A(K ×Ω), c1Ω×K + c2Ω

2
)(

c1K
4 − (K,A−1Ω)

)

+c1c2K
2
(
c1AK + c2A(K ×Ω), (c1K + c2K ×Ω)

)
K2Ω2 > 0.

(5.4)

A typical view of a stability region on the parameter plane (K1,K2) is shown in Fig. 9.

Numerical experiments (see Fig. 10) show that, if we choose parameters in the stability region
in Fig. 9, then there exist trajectories which from the neighborhood of the unstable equilibrium
point (σ+ or δ−) tend asymptotically to another equilibrium point (σ− or δ+).

The trajectory of the contact point for the equilibrium points σ± and δ± is described by the
relations

X(t) = x0, Y (t) = ±a
√
Ω2t+ y0,

x0, y0 = const,

where the signs + and − correspond, respectively, to σ± and δ±. Thus, the shell rolls along a
straight line parallel to the axis OY .

5.2. Restriction of the Flow to M 3
f and a Poincaré Map

To carry out a numerical analysis of the behavior of the trajectories of the reduced system (3.2)

in the general case, in the absence of equilibrium points Σ1 on the integral surfaces M 3
f (i. e.,

f > K2), we use a Poincaré map.

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 5 2019



576 BIZYAEV et al.

Fig. 9. The stability region (gray) of the equilibrium points σ− and δ+ on the parameter plane (K1,K2) for
fixed K3 = 0, Ω = (0, 0, 1), A = diag(0.5, 0.3, 0.6).

a) b) c)

Fig. 10. Projection of the trajectory onto the Poisson sphere, the time dependence of the components
of momentum M(t) and the trajectory of the contact point of the shell with the initial conditions from
the neighborhood of the unstable equilibrium point σ+ and x(0) = 0, y(0) = 0 for the fixed parameters:
Ω = (0, 0, 1), K = (4, 5, 0), A = diag(0.5, 0.3, 0.6), a = 1, f = 3.

We first restrict this system to the three-dimensional manifold of the level set of the common
integrals M 3

f . For this, we use the Andoyer –Deprit variables (L, l, g) [17]:

M1 =
√

f − L2 sin l, M2 =
√

f − L2 cos l, M3 = L,

γ1 =
L√
f
cos g sin l + sin g cos l, γ2 =

L√
f
cos g cos l − sin g sin l,

γ3 = −

√
1− L2

f
cos g,

(5.5)

where l, g ∈ [0, 2π) are the angle variables and L, f satisfy the obvious inequality

−1 � L√
f
� 1.

As a secant for this flow on M 3
f we choose the submanifold given by

g = g0.

Numerically integrating the systems under consideration and finding the intersections of trajectories
with the given section, we finally obtain a family of point two-dimensional maps:

Φf,g0 : M 2
g0 → M 2

g0 ,

M 2
g0 = {x ∈ M 3 | g(x) = g0}.

(5.6)
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We will parameterize the manifold M 2
g0 by a pair of variables l mod 2π and L√

f

(∣∣∣ L√
f

∣∣∣ � 1
)
so that

the pair
(
l, L√

f

)
defines a point on the two-dimensional unit sphere S2. The trajectories of this

map for g0 = 0 and different parameter values are shown in Fig. 11.

a) b)

Fig. 11. A Poincaré map for the fixed parameters: a) Ω = (0, 0, 2), K = (2, 2, 0), A = diag(0.7, 0.6, 0.8),
f = 25, b) Ω = (0, 0, 2), K = (2, 3, 0), A = diag(0.8, 0.6, 0.7), f = 25, g0 = 0.

5.3. Asymptotically Stable Regimes of Motion (Attractors)

The numerical investigation of the Poincaré map has shown that the following types of attractors
occur on it: fixed points, limit cycles and a strange (chaotic) attractor. In Fig. 11a, the fixed points
Φf,g0 correspond to the largest concentration of points (almost black regions), and the limit cycle
corresponds to the curve which on this involute of the sphere consists of two parts.

In M 3
f , the fixed points of the map Φf,g0 correspond to a periodic solution and the invariant

curve in Fig. 11a corresponds to a limit torus. The motion of the point of contact in this case is
shown in Fig. 12b and Fig. 13b. The point of contact of the shell can be seen to undergo mean
motion along the axis OX. Note that the displacement along the axis OY does not exceed some
fixed value.

Moreover, a strange attractor arises at some parameters of the map Φf,g0 (see Fig. 11b). This
attractor corresponds to the following Lyapunov exponents:

Λ1 ≈ 0.11, Λ2 ≈ 0, Λ3 ≈ 0, Λ4 ≈ 0, Λ5 ≈ 0, Λ6 ≈ −0.13.

Its Kaplan –Yorke dimension on the Poincaré map is

D = 1 +
Λ1

|Λ6|
≈ 1.84.

The trajectory of the contact point for this case is shown in Fig. 14. As can be seen, the point of
contact of the shell undergoes, as before, mean motion along the axis OX, but the deviation along
the axis OY can increase (irregularly).

APPENDIX A. DERIVATION OF RELATIONS FOR NONHOLONOMIC CONSTRAINTS
AND THE KINETIC ENERGY

In previous work (see, e. g., [41, 49]) the dynamics of systems similar to that investigated in this
paper were considered in the coordinate system attached to the shell. This is due to the following
fact. It is for the coordinate system of the shell that the constraint equations and the kinetic energy
can be calculated in the simplest way (although the equations of motion in this coordinate system
turn out to be more complicated). Therefore, in this appendix we recalculate in explicit form the
constraint equation (both for the classical rolling model and for the rubber rolling model) and the
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a)

b)

A

Fragment A

Fig. 12. Projection of the trajectory onto the Poisson sphere and the trajectory of the point of contact for the
initial conditions from the neighborhood of the stable fixed point in the Poincaré map in Fig. 11a (L = 3.6,
l = 0.6) and for the initial conditions X(0) = 0, Y (0) = 0, (a = 1).

a) b)

A

Fragment A

Fig. 13. Projection of the trajectory onto the Poisson sphere and the trajectory of the point of contact for
the initial conditions from the neighborhood of the stable limit cycle in the Poincaré map in Fig. 11a (L = 0,
l = 1.96) and for the initial conditions X(0) = 0, Y (0) = 0, (a = 1).

A

Fragment A Fragment B

Fig. 14. The trajectory of the point of contact for the initial conditions from the neighborhood of the stable
limit cycle in the Poincaré map in Fig. 11b (L = 0, l = 0.6) and for the initial conditions X(0) = 0, Y (0) = 0,
(a = 1).

kinetic energy to pass from the coordinate system attached to the shell to the coordinate system
attached to the frame.

To specify the orientation of the shell, we introduce a noninertial coordinate system Cxyz which
is attached to the shell. We denote its unit vectors by ex, ey and ez. Let the unit vector ez = (0, 0, 1)
be directed along the axis of dynamical symmetry of the shell. Then the angular velocity of the
frame relative to the shell is defined by the relation Ω(t)ez.

Nonholonomic constraints. Let u and w be, respectively, the translational velocity and the
angular velocity of the shell, referred to the axes Cxyz. As is well known, the conditions that there
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is no slipping and no spinning at the contact point P are defined by the following relations:

u+ aΓ×w = 0, (w,Γ) = 0, (A.1)

where Γ is the normal to the plane projected to the axes Cxyz.

The rotation matrix P(t) which defines the transition to the coordinate system Cx1x2x3
(attached to the frame) has the form

P(t) = RΦ(t),

Φ(t) =

⎛
⎝

cosϕ(t) sinϕ(t) 0

− sinϕ(t) cosϕ(t) 0

0 0 1

⎞
⎠ , ϕ(t) =

∫ t

0
Ω(τ)dτ,

where R is the constant matrix.

The transition to the velocities v and ω (in the coordinate system Cx1x2x3) is defined by the
following relations (see [17] for details):

ŵ = PT ω̂P+ ṖTP, v = Pu,

ω̂ =

⎛
⎜⎜⎜⎝

0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞
⎟⎟⎟⎠ , ŵ =

⎛
⎜⎜⎜⎝

0 w3 −w2

−w3 0 w1

w2 −w1 0

⎞
⎟⎟⎟⎠ .

(A.2)

The angular velocity vector of the frame and the normal to the plane in Cx1x2x3 have the form

Ω(t) = Ω(t)Pez , γ = PΓ.

Taking these relations into account, we represent the equations for constraints (A.1) in the form

v + aγ ×
(
ω −Ω(t)

)
= 0,(

ω −Ω(t),γ
)
= 0.

Kinetic energy. We represent the kinetic energy of the shell as follows:

Ts =
1

2
msu

2 +
1

2
(w, Isw),

where ms and Is = diag(Is, Is, Js) are the mass and the principal moments of inertia of the shell,
respectively.

In the coordinate system Cx1x2x3, up to an additive function of time, we obtain

Ts =
1

2
msv

2 +
1

2
(ω,RIsR

Tω)− Js(ω,Ω(t)).

The kinetic energy of the frame in the coordinate system Cx1x2x3 can be represented as

Tf =
1

2
mfv

2 +
1

2
(ω, Ifω),

where mf and If are the mass and the tensor of inertia of the frame, respectively.

The kinetic energy of the ith rotor has the form

Ti =
1

2
μiv

2 +
1

2

(
ω + φ̇i(t)ni, ji(ω + φ̇i(t)ni)

)
,

where mi and ji are the mass and the tensor of inertia of the ith rotor, respectively, and ni is the
unit vector defining its direction of rotation.
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Using the fact that the axis of rotation of the rotor coincides with the axis of dynamical
symmetry, i.e., jini = jini, we obtain the kinetic energy of the system in the form

T = Ts + Tf +

n∑
i=1

Ti =
1

2
mv2 +

1

2
(ω, Iω) + (k(t),ω),

where m is the mass of the entire system, and I and k(t) are its moment of inertia and gyrostatic
momentum, respectively:

m = ms +mf +

n∑
i=1

μi, I = RIsR
T + If +

n∑
i=1

ji,

k(t) =
n∑

i=1

jiφ̇i(t)ni − JsΩ(t).

(A.3)

Since the matrix I is symmetric and positive definite, one can always choose the matrix R in such
a way that I = diag(I1, I2, I3) is a diagonal matrix.
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36. Fassò, F. and Sansonetto, N., Conservation of “Moving” Energy in Nonholonomic Systems with Affine
Constraints and Integrability of Spheres on Rotating Surfaces, J. Nonlinear Sci., 2016, vol. 26, no. 2,
pp. 519–544.

37. Fedorov, Yu.N., Motion of a Rigid Body in a Spherical Suspension, Vestn. Mosk. Univ. Ser. 1. Mat.
Mekh., 1988, no. 5, pp. 91–93 (Russian).

38. Fedorov, Y.N. and Kozlov, V.V., Various Aspects of n-Dimensional Rigid Body Dynamics, Amer. Math.
Soc. Transl. (2), 1995, vol. 168, pp. 141–171.

39. Golubev, V.V., Chaplygin, Izhevsk: Institute of Computer Science, 2002 (Russian).
40. Hatcher, A., Algebraic Topology, Cambridge: Cambridge Univ. Press, 2002.
41. Ilin, K. I., Moffatt, H.K., and Vladimirov, V.A., Dynamics of a Rolling Robot, Proc. Natl. Acad. Sci.

USA, 2017, vol. 114, no. 49, pp. 12858–12863.
42. Kilin, A.A., Pivovarova E.N., Qualitative Analysis of the Nonholonomic Rolling of a Rubber Wheel

with Sharp Edges, Regul. Chaotic Dyn., 2019, vol. 24, no. 2, pp. 212–233.

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 5 2019



582 BIZYAEV et al.

43. Kilin, A.A. and Pivovarova, E.N., Chaplygin Top with a Periodic Gyrostatic Moment, Rus. J. Math.
Phys., 2018, vol. 25, no. 4, pp. 509–524.

44. Kozlov, V.V., On the Theory of Integration of the Equations of Nonholonomic Mechanics, Regul. Chaotic
Dyn., 2002, vol. 7, no. 2, pp. 191–176.

45. Kuleshov, A. S., On the Generalized Chaplygin Integral, Regul. Chaotic Dyn., 2001, vol. 6, no. 2, pp. 227–
232.

46. Li, C., Two Problems of Planar Quadratic Systems, Sci. Sinica Ser. A, 1983, vol. 26, no. 5, pp. 471–481.
47. Lichtenberg, A. J., Lieberman, M.A., and Cohen, R.H., Fermi Acceleration Revisited, Phys. D, 1980,

vol. 1, no. 3, pp. 291–305.
48. Markeev, A. P., Integrability of the Problem of Rolling of a Sphere with a Multiply Connected Cavity

Filled with an Ideal Fluid, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1986, vol. 21, no. 1, pp. 64–65
(Russian).

49. Putkaradze, V. and Rogers, S., On the Dynamics of a Rolling Ball Actuated by Internal Point Masses,
Meccanica, 2018, vol. 53, no. 15, pp. 3839–3868.

50. Svinin, M., Morinaga, A., and Yamamoto, M., On the Dynamic Model and Motion Planning for
a Spherical Rolling Robot Actuated by Orthogonal Internal Rotors, Regul. Chaotic Dyn., 2013, vol. 18,
nos. 1–2, pp. 126–143.

51. Tsiganov, A.V., Hamiltonization and Separation of Variables for a Chaplygin Ball on a Rotating Plane,
Regul. Chaotic Dyn., 2019, vol. 24, no. 2, pp. 171–186.

52. Tsiganov, A.V., On the Poisson Structures for the Nonholonomic Chaplygin and Veselova Problems,
Regul. Chaotic Dyn., 2012, vol. 17, no. 5, pp. 439–450.

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 5 2019


