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Abstract

Turing and Hopf bifurcations are well-known
examples  of instabilities in  chemical reaction-
diffusion systems. In combination with an open flow,
the field of dynamic phenomena becomes much richer
as absolute and convective instabilities interact with
the spatial and temporal pattern formation, This area
of research is presently attracting considerable
interest, particularly since it was shown theoretically
as well as experimentally that stationary patterns can
arise even when the interacting species have similur
diffusion constanis. Our paper presents a review of
some of the new dynamical phenomena that one can
observe in reaction-diffusion system with open flows.
This review is based on an analysis of the one-
dimensional  Ginzburg-Landau  equation  for a
Brusselator model with flow. Absolute and convective
instabilities in the infinite system are discussed
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together with the significance of inflow perturbations. In particular we discuss the rigid
excitation of stationary patterns in the presence of inhomogeneous inflow conditions and
suggest an estimate for the frequency of the nonlinear global mode near the critical
point in a system with homogeneous inflow conditions.

1. Introduction

Hopf and Turing instabilities belong to the fundamental set of symmetry breaking
bifurcations that one can observe in chemical reaction-diffusion systems under far-from-
equilibrium conditions [1-3].

By breaking the time translation symmietry, the Hopf bifurcation leads to self-
sustained temporal oscillations in the concentrations of the reacting species. This type of
instability has been known in chemistry since the seminal works of Belousov and
Zhabotinsky [4]. Numerous other autocatalytic reactions have since been found to
exhibit a similar oscillatory behavior, and experiments in continuously stirred reactors
have shown how the regular oscillations can develop into deterministic chaos and other
forms of complex dynamics [5-7]. In unstirred reactors, the oscillatory dynamical
processes can produce a variety of different wave-like phenomena, including, in two and
three dimensions, rotating spirals and so-called target waves [8, 9]. These phenomena
have been shown to arise directly from the coupling of the local nonlinear chemical
reactions with the diffusion of the involved species.

The Turing instability, on the other hand, by breaking the translational symmetry
in space, produces stationary patterns with a wavelength that is determined by the
reaction parameters and diffusion constants of the chemical species [10—16]. In one-
dimensional systems the patterns take the form of a regular stripe structure. In two-
dimensional systems, both stripes and hexagons can occur, and subsequent instabilities
can lead to the formation of zig-zag structures or to stripe structures with a modulation
of the interstripe distance [17]. For the Turing instability to arise, the system must
involve a positive feedback mechanism, typically in the form of an autocatalytic
process by which an activator species reinforces its own production. The pattern-
formation is controlled by the producticn of an inhibitor species {(or by substrate
depletion), and the instability depends on the inhibitor exhibiting a significantly larger
diffusion rate than the activator.

When an instability occurs in a system with an open flow there are essentially two
ways in which a spatially localized perturbation can grow. For low flow rates, the
perturbation can spread to both sides, upstream as well as downstream, and the
amplitude will grow at all points of space. This is referred to as the case of absolute
instability. When the flow rate is sufficiently large, however, the growing perturbation
will be swept along with the flow, and asymptotically the amplitude decays towards zero
at all fixed points in space. This is the case of a convective instability [18-25]. In a
reference frame that moves with flow the transition between the two instabilities may be
considered as a problem of velocity selection for a front of the propagating perturbation
[26-30].

The combination of an open flow with a chemical reaction-diffusion system
enriches the field of dynamic phenomena significantly. This area of research has recently
attracted considerable attention [31-40], particularly since it was suggested [24] that
stationary spatial structure can emerge in such systems, even when the interacting
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species have similar diffusion constants. The conditions that must be satisfied to realize
such pattern experimentally are relatively simple [34]. At the same time, the combination
of an open flow with a chemical reaction system is of interest in connection with
industrial production processes,

For semi-infinite systems, the boundary condition at the inflow has a significant
influence on the dynamics. The so-called nonlinear global (NG) mode arises when the
inflow condition corresponds to the homogeneous steady state of the system [31, 32].
However, the frequency of the NG mode differs from the frequency observed under the
same conditions in an unbounded system.

With an inhomogeneous inflow condition a new type of pattern formation exists that
differs from the “classical” Turing mechanism [24, 33, 34]. This is referred to as a
“flow-distributed oscillations” (FDO) [34, 35]. In the general case when different forms
of pattern formation take place, they are referred to as “flow and diffusion distributed
structures” (FDS) [36, 37].

The cubic Ginzburg-Landau (GL) equation is a generic and well-studied model for a
large class of dynamical phenomena in nonlinear systems [41]. This equation provides
an approximate description of spatially extended systems near a bifurcation threshold,
[2, 3, 42, 43]. The purpose of the present paper is to discuss the formation of flow and
diffusion distributed structures by means of the GL equation. We consider this equation
for a “canonical” reaction-diffusion model, namely the one-dimensional Brusselator in
which a constant flow is present [24]. The GL equation for the Hopf bifurcation has a
complex form while for the Turing case the form is real.

Some of the considered phenomena have been published before. However, we
believe that it is useful to review them here and compare their manifestations in the GL
equation for the Turing and Hopf instabilities. Special emphasis is given to a discussion
of the rigid excitation of stationary patterns that are found to appear in presence of an
inhomogeneous inflow perturbation. We also provide an estimate of the frequency of the
nonlinear global mode near the critical point.

The organization of the paper is as follows. In Sec. 2 we review the basic
instabilities in the one-dimensional Brusselator with flow. Section 3 discuses the GL
equation for the Brusselator at the Hopf and Turing thresholds. Section 4 provides a
linear analysis of the transition from absolute to convective instability, and the equations
for the critical flow rate and for the corresponding frequency and wave number are
obtained. Section 5 is devoted to a study of the stationary patterns that emerge when an
inhomogeneous perturbation is applied to the inflow. In this connection, the rigid
excitation of patterns is discussed. In Sec. 6 we consider the fully developed time-
periodic solutions, when the time dependence is eliminated and the spatial dynamics is
described by a set of ordinary differential equations, Finally, Sec. 7 contains an overview
of the obtained results, and the Appendix illustrates the procedure for derivation of the
GL equation.

2. Instabilities in the one-dimensional Brusselator model

with flow

As a concrete example for our analysis we consider the one-dimensional
Brusselator. This is one of the first and most influential medels of reaction diffusion
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systems under far-from-equilibrium conditions. In the presence of advection, the model
is specified by the following set of dimensionless equations [24].

au ou 9 o

5?+va = A—(B+1)UfUV+0w,

ov v 2 v 43
o Ve = BU-UVH G

Here, U and V denote the dynamical variables, and A > 0 and B > 0 are control
parameters. More precisely, U and V represent the concentrations of two reacting
chemical species, and A and B are the feed concentrations of two other species.
0 < o <1 is the ratio of the diffusion constants for U and V, and v > 0 is the flow rate.
The flow is supposed to be directed from the left towards the right. The system (1) has a
homogeneous steady state (U, Vi) given by the equations

Us = A, Vs = B/A, @

In the absence of a flow, two “classical” bifurcations, namely the Hopf and the
Turing bifurcations, are observed in the Brusselator model [1}. The corresponding
instability thresholds as defined from the linear stability analysis are

B=By=1+A%and B = By = (1 + A/0)% ?3)

If By < B, then a Hopf bifurcation occurs at B = By, and one observes the
development of spatially homogeneous temporal oscillations. The corresponding critical
wave number and frequency are

ky =0and wy = A. “

For Br < By the point B = Br is the threshold of a Turing bifurcation that results in
a spatially periodic structure. This instability can only aries if there is a significant
difference between the diffusion rates of the components U and V and, hence, only
emerges for o < 1. If the advection is absent (v = 0), the Turing structure is stationary.
With a non-zero flow rate, on the other hand, temporal oscillations appear via the
Doppler effect. At the critical point the structure is characterized by the wave number
and the frequency:

kp = £AY26~Y4 and wy = vkr. 5)

For reaction-diffusion-advection systems with a constant inflow perturbation the
formation of stationary space periodic structures was recently predicted theoretically and
soon after observed experimentally [34]. Such structures are now referred to as a flow-
distributed oscillations (FDO) [34, 35]. FDO emerge in the Hopf instability domain,
and the whole phenomenon is a remarkable example of a non-Turing mechanism of
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pattern formation. Moreover, this type of pattern formation happens even for equal
diffusion coefficients.

The general situation where the stationary structures arises due to the combined
action of flow and diffusion was discussed in a couple of recent papers by Satnoianu et
al. [36, 37]. These structures are sometimes referred to as flow and diffusion distributed
structures (FDS). FDS are shown to be more easily attainable in chemical systems than
Turing (and FDO) structures and, hence, they may play an important role in biological
pattern formation.

3. Ginzburg-Landau equation
For a wide class of systems near the bifurcation threshold the GL equation takes the
form:

Bew = pw — v Fpw + (by +ic)02w — (b3 + icz)|w[*w (6)

Here w= w(x, £) denotes the amplitude to be determined and p is the parameter that
controls the distance from the bifurcation point. The remaining parameters by, ¢y, b3, and
c3 depend on the system under consideration.

The procedure for derivation of the coefficients of the GL equation is well-known,
[2, 3, 42, 43]. For the considered reaction-diffusion system with flow the procedure is
illustrated in the Appendix.

Near the Hopf threshold the coefficients for the system are:

_B-By
p"_' 2 )
140 A(l - ¢
b1= D) y 1= (2 )1
2+ A? 4 TA 4+ 4A4
by = 242 ' = 6A3 ' Q)

Thus, in this case the GL equation (6) is complex. The coefficients by, ¢,, by and c; are
atways positive for the considered values of the parameters. (It can be shown that ¢3 =0
only for imaginary values of A and ¢; > 0 for real positive A.) When, in the initial system
(1), the diffusion coefficients for U and V coincide (o= 1) one has b; = 1, ¢, = 0 and,
hence, the linear part of the GL equation for the Hopf case becomes real.

For the Turing case the GL equation is real and the coefficients read:

_ _B-Br
P= 7Bl ey
40
b= —m=——, =0,
1= UBri—a)
. _ TBH3BAVG 4542 —BA
3T 9A%(1 — 0)\Jo HRS (8
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The coefficient b, is always positive while b; is positive for
(21 — v313)/16 < Ao < (21 +/313)/16. )]

As can be checked numerically, the fully developed oscillations in the Brusselator model
(1) outside of this band is more complicated then the usual Turing oscillations, and the
solution to the corresponding GL equation diverges. When o = 1 the coefficients p, b,
and b diverge and pattern formation via the Turing mechanism can not occur.

4. Linear analysis of absolute and convective instabilities
The linearized GL equation reads:

Qw = pw — v Gyw + (b + 7c1 ) 02w, (10)

Sr+gx

Decomposing the solution of Eq. (10) in terms of elementary waves ¢% one obtains the

dispersion relation

P (s=v—iw, g=6+ik), an

d(s,q) =s—p+vg— (b +ici)g
where w denotes the frequency and k is the wave number. ¥ and & are the time and space

increments, respectively.

The system (10) is stable when, for any spatially stable mode g = ik, the time
increment is negative, y < 0. One can easily check that this is the case for p < 0. Above
the bifurcation point, where p > 0, the system is unstable. Separating the real and
imaginary parts of (10) while keeping & = 0 one finds the band of linearly unstable
modes:

k® < p/by. (12)

Depending on the flow rate » the instability may be absolute or convective. There
are two basic approaches to determine the critical value z,, namely the pinch-point
analysis, [18-22] and the marginal stability analysis, [26—30]. Both approaches result in
the same equations:

od/og
' ddjBs (13)

Thus, by solving the equations (13) for the GL equation (10), one has [45]:

Voo = ZVp(b'f+c¥)/b1, (14)

Weo = —pci/br, (15)

koo = —C \/p/(bl(b% + C%)) (16)

d(s,g) =0, Res(q) =0
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Note that k., belongs to the band of the linearly unstable modes (12). The above 5. Stationary patterns induced by the inflow perturbation
equations correspond to the Hopf case, while for the Turing case one needs to set ¢; = Spatially periodic, stationary patterns (flow and difusion distributed structures
¢3 = 0. This gives w, = k, =0, i.e., the solution is homogeneous. (FDS), [36, 37] are known to appear in reaction-diffusion systems with flow when a
Equation (14) suggests that a transition from absolute to convective instability will constant inhomogeneous boundary condition is applied to the system inlet [24, 33, 34]
take place when the flow rate changes while the other parameters remain fixed. provided that the flow rate is larger then some critical value. Below we consider these
Alternatively, the transition can be observed when p changes while the flow rate structures for the Turing and Hopf GL equation (i.e., for the real and complex versions
remains fixed [32]. In this case the corresponding critical value reads of the GL equation, respectively). As we shall see, a stationary pattern may be excited
2 2 2 even below the critical flow rate, if the amplitude of perturbation is large enough. In this
Pea = v7b1/(4(b7 + ¢5)). an case a rigid excitation takes place.

It is important to recall here that the considered GL equation describes the slow
modulation of the oscillating solution to the Brusselator (1) (see Appendix for details).
This means that even if the solution to the GL equation is stationary, the corresponding
solution to the original system is oscillating. Hence, relative to the original system (1)

The system is convectively unstable for 0 <p <p., and absolutely unstable for p > p,.
To obtain numerical solutions to the partial differential equations (1) and (6) we use
the semi-implicit Crank-Nichalson scheme. Typical time and space step values are about

0.1. Thc right boundary condition is free and the }eft F:ondi!:if)fl is.taken to be constant. the stationary structures considered below may be treated as a “secondary” or
Figure 1 compares the absolute and convective instabilities in the Brusselator model “modulating” FDS.
(1) (left column) with the corresponding instabilities in the GL equation (6) (right Applying the inhomogeneous boundary condition . # O to the GL equation (6)

column). Observe that the fronts of perturbation propagate with the same velocities for
the two models. In the complex GL equation for the Hopf instability only the slow
oscillations are observed while for the Turing case one sees the homogeneous solution.

one finds the threshold value for the flow rate by substituting s = 0 into the dispersion
equation (11):
a)

(b +ic1)g* —vg+p =0, (18)

400 | AH) |

00 W B

This equation has two solutions, g; and g, that determine the wave numbers and
amplitude increments towards the positive semi-space and in the backward direction,
respectively. One obtains the critical flow rate by substituting g = ik into (18) and
separating the real and imaginary parts:

= 20

2 2 0L ARy S
0 50 100 150 200 0 50 100 150 200
. L Ut = C1 p/bl, kst ==y p/bl- (19}

i

- 200

100

L1

20 For v < v, the real parts of g, and ¢, have different signs, and they are both positive
above this threshold. This means that the stationary pattern must grow towards the
positive semi-space for v > u,. However, as noted by Andresén et al. [33], the stationary
pattern develops from the constant inflow perturbation if the flow rate is above both u,
and u,. One can easily check that for the considered case v < v, and, hence, the
threshold value for the stationary pattern is u,, while vy is the lower flow rate for which

the stationary solution exists (but, possibly, without being selected). Note that &, lies on

150 130

~ 100 - 00

50| 50

0 50 100 150) 200)
' A the left boundary of the interval of the linearly unstable modes (12}. In the following we
shall show that the stationary solution can be selected even below the critical point v, if

Figure 1. Absolute and convective instabilities in the Brusselator model (1) (panels (a) and (c)) the inflow perturbation is large enough. ,
and in the GL equation (6) (panels (b) and (d)). The coefficients to the GL equation were obtained Let us first consider the Turing case. Because the coefficients of the corresponding
from Eqs. (7) and (8). The gray scale represents U for the system (1) and Re w for the GL equation GL equation are real, temporal oscillations are not observed, and the following stationary
(6). Lighter tones correspond to larger values. Panels (a) and (b) represent the Hopf absolute solutions exist:
instability at A = 1, B = 2.1, ¢ = 0.25, y, = 0.412. (c) and (d) show the Turing convective
instability at A = 2, B=4.1, o =0.25, v, = 0.422. The flow rate is v = 0.2 for panels (a) and (b), WL =0, WF = +/p/bs. (20)

and v= 0.5 for (c) and (d).
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The solutions Wy and W, are symmetrical about the unperturbed steady state W, and

the system (6) selects one of them depending on the initial state. To observe growth of
the stationary mode from the constant inflow boundary perturbation, we introduce a
small negative fluctuations as the initial conditions for ¢ = 0 and apply a small positive
boundary condition at x = 0. This combination of boundary and initially conditions
results in the competition of two modes, W; and W;; that is shown in Fig. 2(a). Here the
black shading represents the W,; mode, white is W and gray is W.. As we can see, for
flow rates above the critical point, v > v, the mode W; initiated by the boundary
perturbatlon dominates and spreads over the whole semi-space.

This is not in disagreement with the previously reported condition that FDS arises
outside the Turing instability domain, [24, 33, 34, 36]. As noted above, the considered
GL equation corresponds to the oscillating solution of the Brusselator (1) and, hence, the
described effect in the original system (1) corresponds to a running phase flip between
two modes with the same frequencies.

For the Hopf case a similar but more complicated picture is observed. This is
illustrated in Fig. 2(b). Above the threshold v, the stationary mode develops from the
boundary perturbation and all time oscillating structures drift downflow. This is a typical
manifestation of FDS [24, 33, 34]. The presented figure corresponds to the case of
different diffusion coefficients in the original system (1), i.e, o < 1, but qualitatively the
same situation has been observed for & = 1.

Let us now consider flow rates below the critical value 2.,. In this case stationary
structures are found to emerge when the boundary perturbation is large enough such that
arigid excitation can take place.

The rigid excitation for the Turing case is illustrated in Fig. 3. For this figure both
the initial and boundary conditions are the same as in Fig. 2(a). The panels (a) and (b)
are computed at v> v, for the same parameters and initial conditions but with different

a)

[iM] 140) | &
120 | &

10K)

8
G

060

] 20 10 60 80 1(X) 0 20 40 60 80 [

X X

Figure 2. Stationary structure, emerging for the constant inflow perturbation (i.e. FDS) in the GL
equation (6) for (a) Turing and (b) Hopf cases. The perturbation is w|,-c=10"* for both cases, and
the other parameters are: p=1, b=1, b;=1, v=2.2 (v,;=2), (b) p=1, b1=1, cl=1, b3=1, ¢3=3, v=3
(v..=2.828). In panel (a) for the Turing case the white tone corresponds to the positive
homogeneous solution, the black represents the negative solution and the gray is the steady state.
The initial conditions are small negative fluctuations while the inflow perturbation is positive.
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Figure 3. Rigid excitation of the homogeneous stationary structure by the constant inflow
perturbation in the GL equation (6) for the Turing case. The parameters are: p = 0.1, by =10, by =
3, and » = 0.5 (v, = 2). The initial conditions are small negative fluctuations with amplitude
0.005. In the panel (a) the inflow perturbation is too small, W= = 0.02, to induce a stationary
structure, while in the panel (b) the homogeneous structure emerges for the larger perturbation

W= = 0.04.

inflow perturbations. In panel (a) the perturbation is small and mode W grows from the
initial state while the boundary perturbation decays. On the contrary, in panel (b) the
larger boundary perturbation grows to the mode W, and the state W, drifts downflow.
The threshold value of the inflow perturbation depends on the amplitude of the initial
perturbations and becomes larger for larger initial amplitudes.

The rigid excitation of flow and diffusion distributed structures in the Hopf case is
illustrated in Fig. 4. In this figure v < u, and all the panels are drawn for the same
parameters. The boundary perturbation w,-o increases from panel (a) to panel (d).
Observe how the homogeneous boundary condition w0 = O in panel (a) and a small
inhomogeneous perturbation in panel (b) induce the oscillating modes. The mode in
panel (a) is an NG mode as described by Couairon and Chomaz [32]. Note that the
structure near the inlet in panel (b) has the same space and time periods as in panel (a)
and that the presence of the boundary perturbation results in a failure of the wave
propagation'. With further increase of )9 the oscillating mode disappears and a FDS
emerges that is “weak” and decaying in panel (c), and spreading over the space in panel (d).

Note that in contrast to the Turing case, where two competing modes are excited by
the initial and boundary perturbations respectively, for the Hopf case both the oscillating
mode and the FDS are induced by the boundary perturbation and, hence, the qualitative
picture does not depend on the amplitude of the initial perturbation.

As we can observe from the numerical simulation, the effect of rigid excitation of
FDS is not specific to the GL equation. For the Brusselator model (1) in the Hopf
instability domain when v, > u., no stationary structures exist below the threshold w,, for
any inflow perturbation. But if vy < y,, as for the GL equation, the rigid excitation

'As we have checked, this wave propagation failure is not a consequence of the right boundary.
The same picture is observed even if the system is very long and the initial perturbation does not
reach the right boundary during the observation.
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Figure 4. Rigid excitation of FDS in the GL equation (6) for the Hopf case when v < y,. For all
panels the parameters are: p=1,b,=1,¢;=1,b3=1,¢c3 =3, and v=2.5 (y, = 2.828). No FD§
exist when the inflow perturbation is absent as in panel (a), W,=o =0, or is small as in panel (b),
=0 = 0.001. When the perturbation becomes larger, the “weak” FDS first disappears after some
time as in panel (c), %= = 0.01, and then the FDS spreads in space as in panel (d), w0 = 0.05.
Observe that in panels (a) and (b) the wave states near the system inlet are the same, but the wave
is not running downflow for the inhomogeneous perturbation in panel (b).

takes place. This is shown in Fig. 5. For both panels in this figure v, < v < 2,; in the
panel (a) the small perturbation is too weak to induce a stationary structure while in
panel (b) the perturbation is larger and a stationary structure appears.

6. Time periodic solutions

In this section we consider a class of solutions to the GL equation (6) that are time
periodic for the Hopf case (i.e., for the complex GL equation) and stationary for the
Turing case (when the GL equation is real). For this class of solutions the partial
differential equation (6) reduces to a set of ordinary differential equations for an
amplitude and phase of the solution. Fixed points of these equations are the nonlinear
wave states of the GL equation and heteroclinic orbits, joining these points, are fronts,
pulses, and other localized structures separating ideal patterns. This approach is one of
the “classical” methods for analyzing the GL equation and has been utilized by many
authors. Particularly, detailed analyses of the complex GL equation are provided by van
Saarloos and Hohenberg [45]. Peculiarities of absolute and convective instabilities for
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Figure 5. Rigid excitation of FDS in the Brusselator model with flow (1). The parameters are in
Hopf instability domain: A =1, B =3, 6= 0.6, and #= 1.2 (&, = 0.851 and v, = 1.335). Note that
Up < V< %, Hopf oscillations exist in panel (a), where the inflow perturbation is small, Uj,p =
Us + 0.01, and in panel (b) FDS appears for U}, = Us + 0.1. (Here U is the homogeneous steady
state (2)).

nonlinear systems were considered by Chomaz [23] and by Couairon and Chomaz [31]
using the real GL equation [31]. The NG modes appearing in the presence of a
homogeneous inflow boundary condition were studied by Couairon and Chomaz both in
the real GL equation and in the complex GL equation [32]. Below we briefly summarize
the most important results for the Hopf and Turing instabilities and suggest an estimate
for the frequency of the NG mode near the critical point. Finally, we discuss the rigid
excitation of flow and diffusion distributed structures that was observed in Sec. 5.
Let the solution to the GL equation (6) be of the form:

w(z,t) = W(z)elkeet), Q1)

where W(z) is a complex function of z, and % and w are the real wave number and
frequency, respectively. This form of solution is appropriate for the Hopf case while for
the Turing case k and w become equal to zero and W(z) is real.

Often an ansatz for the structure of a time periodic solution different from (21) is
used: W(z) is supposed to be real and a real function of z is written instead of kx in (21)
[32, 45]. This leads to a three-dimensional set of ordinary differential equations with a
singularity in the phase space. On the other hand, the formulation (21) leads to a four-
dimensional dynamical system without a singularity and, hence, as noted in [32], this
formulation is more appropriate for numerical simulations. Below we present the results
of these simulations. In particular, we discuss the structure of the phase space near the
fixed points.

Let us suppose for a moment that W is constant and substitute (21) into the GL
equation (6). We find that the nonzero amplitude W exists only if w and k satisfy the
equation

b3w = C3p + Ub3k + (C]b;} - C3b1)k2, (22)
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and £ belongs to the interval

k% < p/b. (23)
For the Turing case ¢; = ¢3 = 0, and Eq. (22) reduces to

w = vk. (24)

Because we assume w = k = 0, this is always satisfied.

Equation (22) couples the values of w and k for which the time periodic solution
exists and, hence, plays the same role as the dispersion equation (11) for linear
oscillations. Observe that the interval (23), where the solution exists, is the same as the
interval (12) for the linearly unstable modes. Note that for the frequency w we obtain
different wave numbers k from Eq. (11) and Eq. (22). This is a manifestation of the well-
known phenomenon that the period of oscillation in a nonlinear system depends on its

amplitude.
Let us now find the equation for W(x). Substituting Eq. (21) into the GL equation (6)
and eliminating w by using Eq. (22) we have for the Hopf case:

(b +ico)BeW — (by + ic) )OEW + (b + ica) (W2 = X)W =0, (25)

where the following notation is used:

X =\ (p—b1k?)/b3, bo = v + 2c1k, cg = —=2bk. (26)

For the Turing case ¢; = ¢3 =0, k =0, hence

X = /p/bs, bp =v, g =0, (27)

and Eq. (25) is real.
Egquation (25) has the fixed points

WL =0 and ’WNI = X (28)

Due to the phase invariance of the GL equation, w — w e”, the Wy points form an

invariant set that is a circle around W, for the Hopf case and a pair of points in the
Turing case.

Equation (25) may be transformed into a set of four real equations of first order by
separating the real and imaginary parts of the complex amplitude W{x) = Ug(x) + iVy(x):

oUs = U,

oVo = W,

&U1 = bl —&WVi+ (Bl - &V) U2 + V2 — X2), 29
AV = boVi+ &lUs + (BVo + &U)UZ + V2 — X2).
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In the Turing case the amplitude W(x) is real and one has a set of two equations:

a::UD = U])
0:U1 bolr + b3U(UF — x?) 0

(here W(x) = Uy(x)). The coefficients for the Hopf case, Egs. (29), are:

50 - bibg + c1eg & = breg — c1byg

b+ct ! 0= b+t
B — b1bs + c1c3 = bicz — c1by G
PTTHAG T THya

We recall that the control parameter p is hidden in %, that the flow rate v is present in by
and that the wave number k appears in 7y, bg, and cq (see (26)). The fixed points in terms
of these equations are

WL - (Uﬂa%aUh VI)L = (Oa 0)010);
Wy {Uo, Vo, Ur, Vi)x = (x cos ¢, xsin,0,0), (32)

where ¢ is an arbitrary phase. For the Turing case, Eq. (30), the coefficients (31) are
reduced to

Bo = v/by, bg = ba/b1, (33)

and the fixed points are

Wy, = (0,0) and Wy = (+x,0). (34)

Let us first discuss the Turing case where the considered equations are real. A more
complicated case where the real GL equation includes higher order terms in w was
studied by Chomaz at al. [23, 31] '

Near the fixed points of Eq. (30) the dynamics is described by the matrixes:

0o 1 (0 1
£L=(—p/bl v/by ) ‘3“‘(2p/bl v/by ) @9

The corresponding eigenvalues are

T \/’U2 + Spbl

vF T 4dph /\N12=U
! ! 2b

Mg = (36)
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Because p > 0 and b; > 0, the eigenvalues M, ; are real for large flow rates and becomes
complex when v falls below the absolute instability threshold v, (14). Their real parts
are always positive. Hence, Wy is a source for the absolute instability and an unstable
node if the instability is convective. The eigenvalues ;. are always real and have
opposite signs, Ay; < 0 and hy; > 0, such that both Wy points are saddles.

The fixed points are linked by the heteroclinic orbits that represent the moving front
solution in the spatially unlimited system (6). To obtain such an orbit numerically, one
needs to apply a small perturbation along the eigenvector corresponding to \y; to one of
the points Wy and then solve the equations (30) with a negative discretization step. In
Fig. 6 the heteroclinic orbits are drawn for the convective and absolute instabilities.
These orbits leave W,_ as unstable manifolds and approach Wy as stable manifolds.

In the semi-infinite system with a homogeneous boundary condition at the inlet, the
nonlinear global mode develops. This is discussed by Couairon and Chomaz [31]. To
represent the NG solution the heteroclinic orbit must cross the axes U, without passing
through Wy, i.e, with some non-zero value U;. One sees from Fig. 6 that such an orbit
exists only when the instability is absolute.

For solutions to the system (6) with the non-homogeneous boundary condition w
= p, the representing heteroclinic orbit must cross the vertical line U = p. As seen from
Fig. 6(a), in the convectively unstable system for any |p | < x there is always one orbit
that crosses this line, and the sign of p determines the mode, Wy or Wy that the system
selects. This situation is discussed in Sec. 5 and illustrated in Fig.2(a).

A different situation is observed for the absolute instability, as illustrated in Fig.
6(b). The heteroclinic orbits first leave the origin spiralling and then take the from of an
arc. When p is inside the region of spiraling (this is marked in the figure by the vertical
dashed lines) the condition of existence is satisfied both for mode Wy and for mode Wy,
because both of the corresponding orbits cross the line Uy = p. The ordinates of these
intersection points are the slopes at the origin of the corresponding solutions to the
system (6). Thus, the system selects the solution depending on the slope of the
initial distribution w{z, ¢ =0). In particular, for positive p this means that if the initial

a)
Uj
0.004

0.002

-0.004

Figure 6. Heteroclinic orbits in the Turing case, Eq. (30), for parameters p = 0.1, b; = 10, b; =3
(v, = 2) (same as in Fig 3). Instability is convective in panel (a), v= 2.5, and absolute in panel (b},
v = 0.5. The dashed lines U, =~ 10.052 in panel (b) mark the boundaries of spiralling.
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perturbation is negative and large enough then the system selects the mode Wy, while
for small negative perturbation the mode W; is selected. An example of this selection is
discussed in Sec. 5 and shown in Fig. 3. For a large inflow perturbation p, that is outside
the region of spiralling, the situation is the same as for the convective instability: Only
one of the orbits crosses the line Uy = p and the corresponding solution is selected by the
system.

Let us now turn to the Hopf case. In this case Eq. (21) defines the family of
solutions to the GL equation parameterized by «. One of these solutions is dynamically
selected by the system. For the spatially infinite system the selection criteria are well
studied, see [29, 30, 45] and references therein. As mentioned in Sec. 4, exactly at the
point of transition from absolute to convective instability, i.e. at v = wu,, the frequency w
is determined by Eq. (15). Substituting v = u, and w = w, into Eq. (22) and taking into
account (23), one obtains the corresponding wave number:

b [P bsy/0% + & — by /0B + &
bl blca - Clbg ' (37

Supposing that the frequency depends linearly on » while the wave number is constant,
one writes:

Winf = Wea + Kint(V — Veu). (38)

The pair &y and wyy satisfies Eq. (22) and, as can be checked numerically, agrees well
the frequency and the wave number of fully developed oscillations in the spatially
infinite system.

The dynamics of Eq. (29) linearized near the point W is described by the matrix

0 0 1 0
s 0 0 0o
L= _B 2 P 7 = .
13X Gx° by —Go (39)

—-&x® —bx? & by

The eigenvalues of £ are:

by +ico  y/(Bo + ido)? = dx2(bs + i)

A
L 2 2 '
\ bot+izo v/ (bo +id)? — 4xP(bs + ids)
L2 = +
T2 2 ’
)\Ls = )\Lln (40)

Ay = A,
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where an overbar denotes complex conjugation. To study the properties of these
eigenvalues, one can represent the complex expression under the square roots in terms of
their absolute value and phase and then find the real and imaginary parts of ».. In this
way we obtain the following equations:

ReAL =0 = x*(b3bs + bodods — &Ex2) =0, (41)
ImA, =0 = x*(&bs — botds + &2x2) =0, 42)
Re (A1 — Ap) =0 = body— 25x* =0 and N >, (43)
Im (At = A2) =0 = Bydg— 283x2 =0 and N <0, (44

where NV = 53 + 4byx? — 48x*/E . If k lies on the boundary of interval of permitted
values (23), then = 0, see Eq. (26) and, hence, two of the eigenvalues are zero. For the
spatially infinite system in the critical point k = k¢ and v = u,. In this case ¥V = 0, and
both the equations (43) and (44) are satisfied. Hence A; = Xz and X3 = 4. Note that
this is similar to the Turing case. The condition Im X, = 0 is satisfied only for some
definite values of z, and the eigenvalues are complex pairs both for the case of
convective and for the absolute instability. This represents an important difference
relative to the Turing case, where the corresponding eigenvalues (36) are real for the
convective instability and complex when the instability is absolute.

The fixed points of Eq. (29) fill the invariant circle in the phase space and, hence,
there exists a set of the heteroclinic orbits correspending to each point of this circle.
Because of their obvious identical dynamical properties, one can consider only one
representative of this set. In Fig. 7(a) and (b) the heteroclinic orbits for the point
W; = *x are drawn that correspond to the convective and absolute instability in the
spatially infinite system (6). One sees no qualitative difference in comparison with the
Turing case in Fig. 6. In Fig. 8 the roots of Eqgs. (41)-(44) are plotted in the plane (k, 2).
All the eigenvalues have positive real parts above the line Re X, = 0, and the real parts
for two of them are negative below this line. The vertical line k = k;s corresponds to the
spatially infinite system. This line is crossed in the critical point v= 2, by the curve
where below the critical point Re (A\p; — A2) = 0 and above the critical point Im(h\,; —
M2) = 0. Observe that the eigenvalues are complex for all k = ki, excluding two points
where Im X = 0. These points fall on either side of the critical point and are located very
close to this point.

For the homogeneous inflow boundary condition the solution to the complex GL
equation (6) is referred to as a NG mode. A study of this solution was provided by
Couairon and Chomaz in [32]. The heteroclinic orbit, representing the NG solution must
cross the origin with non-zero U, and V,. As seen from Fig. 7(a) and (b) the orbits with

(ki wing) do not satisfy this condition. This means that the presence of the homogeneous
boundary condition results in a change of the frequency of the selected solution.
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a) b)
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0.0
> Uy
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Figure 7. Projections onto the plane (U, ¥y) of the heteroclinic orbits in the Hopf case for Eq,
(29). The parameters are by =1, ¢) = 1.5, b3 =1, 3= 5, p = 1 (¢4, = 3.601). In panels (a) and (b)
the system is spatially infinite, &y = —0.942, the instability is convective in panel (a), v =7 (i =
—4.697), and absolute in panel (b), v = 2 (wiy = 0.0121). In panel (c) the orbit crosses the origin
with non zero U, and V, and hence represents the NG mode, when the homogeneous boundary
condition is applied to the inlet, v =2, kyg = —0.697 (wyg = 1.906).

To find the NG mode one can trace the heteroclinic solutions to Eq. (29) with
different k searching for the simultanecous crossings of zero by U and V,. As for the
infinite mode, there exist a set of NG modes with different phases corresponding to the
different points Wy. One such orbit is shown in Fig. 7(c). This orbit leaves the W point
in a spiraling way. The orbit then makes a loop and its projection returns to the origin of
the plane (Up, Vo), and finally it takes the form of an arc joining the origin (in projection)
with one of the Wy points.

On the plane in Fig. 8 we have plotted the line & = kyg. This line represents the wave
numbers for the NG mode at different flow rates. Observe that the line ends in the
critical point (kng V) and that its slope at this point nearly coincides with the curve Re
Owr — M) =0

The problem of frequency selection for the NG mode was studied in [32]. The
existence of the NG mode was proved when the corresponding infinite system is
absolutely unstable. Moreover, in the critical point the frequency of the NG mode was
shown to be the same as for the corresponding infinite mode, i.e., ung = wt, In the
critical point the slope is obtained for the frequency wig that is considered as a function

of (p— pea).
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5

ImAL=0

k=k'mf
4
k=kng

N D A wrilll

I (A=A z)=0

k=kgps
2 :
© Re(A—Aia)=0
N .
] k

-1 -0.93 -89 -0.85 -08

Figure 8. Plane (k, v) of eigenvalues X, (40) for the Hopf case. The solid curves represent the
roots of Egs. (41)-(44) while the dashed curves correspond to the different solutions to the GL.
equation. The parameters are as in Fig. 7. The bullet points on the left edge mark the lower bound
of possible values of k as given by Eq. (23). The line k= kyis crossed in the critical point v= u.,
by the curve where below the critical point Re(h; — M2) = 0 while above the critical point Im(x
— A2) = 0. The curve k = kyg ends in the critical point (ks #,). Note that the slopes of the
curves k = kyg and Re(M\,; — »p2) = 0 in the critical point are nearly the same.

Considering the behavior of the curves k = kng and Re{d; — N2) = 0 in Fig. 8, we
can suggest a simple estimate for the frequency of the NG mode. Substituting the terms
of the equation (43) by their values from (26) and (31) and expressing & via w using Eq.
(22) we can write the approximate equation:

P O T - S
N T AR @)

Note that this equation is linear with respect to p and quadratic in terms of v. In the
critical point wng = wh,. In Fig. 9 the exact frequency of the NG mode is compared with
that obtained from Eq. (45). We observe that Eq. (45) approximates well the slope of the
exact curve in the critical point.

Let us now suppose that an inhomogeneous boundary perturbation is applied to the
system inlet. The wave number for the FDS emerging in this case can be obtained from
Eq. (22) by substituting w= 0 and considering condition (23):

vhy — \/v%g + dpea(bicy — c1b3)
2(b103 - C1b3)

kpps = . (46)
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Figure 9. Frequency of the NG mode (dashed line) measured directly from the numerical solution
of the GL equation (6) and the approximate frequency obtained from Eq. (45) (solid line). The
parameters are (a) by= 1,1 = 1.5, ba=1,c3=5, v=2; (0 by = 1,6, =0.5,b3=1,c3=-0.2, v=
0.9. Observe, that Eq. (45) approximates well the slope of the exact NG frequency in the critical
point while outside of this point the lines diverges.

The graph of this equation is drawn on the plane of Fig. 8. Recall that in Sec. 5 the lower
flow rate and the corresponding wave number for which the considered solution exists
are found to be v, and & (19). These vales satisfy Eq. (46).

For the inflow perturbation 0,4 = pe¥ the representing heteroclinic orbit must pass
through the point (o cos ¢ p sin ¢ 0, 0). In the set of orbits that exist for the given
parameters there is only one that satisfies this condition. Hence, the inhomogeneous
inflow perturbation defines the phase ¢ of the selected solution.

As we have discussed in Sec. 5, below the critical point, i.e, for v <, the system
selects one of two solutions depending on the amplitude of the inflow perturbation. If
this amplitude is small, an oscillating mode is excited with the same time and space
periods as the NG mode. For large perturbations, the flow and diffusion distributed
structures gains an advantage in the competition. Unfortunately, the oscillating mode can
not be described by Eq. (29) because for z = 0 this mode is a nonvanishing constant
while the solution of the form (21) permits this only for w = 0. Hence, the whole picture
of competition can not be represented in the phase space of the system (29), and we can
only investigate the properties of the heteroclinic orbits for the FDS.

In Fig. 8 the line & = kyg is plotted. This can now be considered as representing the
unknown oscillatory solution. The line intersects the line k = kgps. At the point of
intersection w = 0 while at the same time the heteroclinic orbit passes the origin with
finite {/; and V,. We shall refer to the solution at this point as a stationary NG mode.
This solution is illustrated in Fig. 10. In panel (a) the spatio-temporal diagram is
presented. Observe that a stationary structure forms for the homogeneous inflow
boundary condition. In panel (b) the corresponding heteroclinic orbit is plotted. It has a
returning loop and looks like a typical orbit for the NG mode. A remarkable property of
this figure is that it remains the same for the inhomogeneous inflow perturbation.
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Figure 10, Stationary NG mode for the system (6): Spatio-temporal diagram (a) and the respective
heteroclinic orbit (b) obtained when the wave numbers of the FDS and NG mode coincides. The
parameters are as in Figs. 7 and 8, the flow rate is v = 2.9, and the inflow boundary condition is
homogeneous. Note that for the inhomogeneous perturbation this figures would be the same.

The stationary NG mode exist for the GL equation with positive coefficient c3. As
discussed in Sec. 3 in this case the GL equation can describe the slow varying amplitude
of the Brusselator model with flow. For negative c; the frequency does not cross zero as
illustrated in Fig. 9 and, hence no stationary NG mode can be observed.

Competition is absent exactly at the point of the stationary NG mode while outside
this point the mode that grows faster in some sense has an advantage. Because in the

general case the eigenvalues of the matrix £, are complex, a heteroclinic orbit leaves the

W_ point in a spiralling way and then assumes the form of an arc. We suppose that the
FDS dominates over the oscillating solution when the point of inflow perturbation lies in
the FDS orbit on its arc part.

It is convenient to represent the inflow perturbation on the plane (Uy, Vy) as a circle
with center at the origin. For the heteroclinic orbit corresponding to the solution with
phase ¢ the particular inflow perturbation needed to obtain this solution is defined by
the last common point (this can be a point of intersection or touching) of the orbit and
the circle.

Let us consider the vicinity of the point of the stationary NG mode. In Figs. 11(a)
and (b) the heteroclinic orbits are presented when the system is not very far from this
point. We see that the orbits still have the returning loops but they miss the origin. The
radii of the circles in these figures are equal to the critical amplitude of perturbation
above which the FDS dominates over the oscillating solution (the amplitudes are found
from the direct numerical simulations). The critical nature of these circles reveals itself
in their geometrical properties. In the last common point the orbit is tangent to the circle.
Note that this point lies in the beginning of the arc of the orbit. A small variation of the
radius (i.e, the amplitude of perturbation) destroys the picture. Increment transforms the
touching into the intersection and decrement result in disappearance of the common
point. Thus, in this case we have a clear geometrical criterion for finding the critical
amplitude for rigid excitation of FDS.

When the system is far from the point of the stationary NG mode, as in Figs. 11(c)
and (d), no definite criteria for the critical amplitude can be found using our approach.
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Figure 11. Heteroclinic orbits projected to the plane (U, Vp) representing the FDS in the Hopf
case. The dashed circles are drawn with the radiuses that are equal to the critical amplitude of the
inflow perturbation above which the FDS is excited. The parameters are as in Figs. 7 and 8. The
flow rates and the circles radiuses are: (a) v= 3, p=0.016; (b) v=2.8, p=0.0155; (c) v=34, p=
0.02; and (d) v= 2.7, p=0.05. The flow rates in the panels (a) and (b) are close to the intersection
point of the lines k = ks and k = kyg on the plane in Fig. 8 and the orbits are tangent to the
circles. Two other panels are far from the intersection point and the orbits cross the circles with
some angle.

As we see in the figures, the circles for critical perturbation intersect the orbits in points
that have no special properties. This is in contrast to the previous case. But our initial
suggestion that the FDS dominates if the point of inflow perturbation lies on the arc of
the orbit still works. Hence, this can provide a rough estimate for the critical amplitude
for which the rigid excitation of flow and diffusion distributed structures takes place.

7. Conclusion

We considered the real and complex Ginzburg-Landau (GL) equations treating them
as a weakly nonlinear representation for the one-dimensional Brusselator model with
flow near the Turing and Hopf bifurcation thresholds. A real version of the GL equation
corresponds to the system near the Turing instability threshold while the complex
version corresponds to the Hopf instability. In our analysis we combine the linear
approach with numerical calculations of the fully developed time periodic solutions,
Some of our results are known as general properties of the GL equation, but we discuss
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them in the context of the Hopf and Turing instabilities to improve our understanding of
the nature of these instabilities.

For both the Hopf and the Turing bifurcations we discussed absolute and convective
instabilities in the spatially unlimited system, the appearance of a nonlinear global (NG)
mode in the presence of a homogeneous inflow boundary condition, and the emergence
of the stationary space periodic solution (flow and diffusion distributed structure, FDS)
in the presence of an inhomogeneous constant inflow perturbation.

We found that the FDS can be excited below the critical flow rate if the inflow
perturbation is large enough. We refer to this effect as a rigid excitation of FDS. For
some parameter values we found the criterion for determination of the critical amplitude
of perturbation above which the rigid excitation of FDS takes place.

Finally, we considered the NG modes and found for the complex GL equation an
estimate of the frequency for this mode. This estimate was obtained in the linear
approach and is valid near the critical point.
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Appendix. Derivation of the Ginzburg-Landau equation for

the Brusselator model with flow

Near the bifurcation threshold, distributed systems allow an approximate solution in
the form of a fast harmonic wave with an amplitude that is slowly modulated in time and
in space. The equation for this slow varying amplitude is called the Ginzburg-Landau
(GL) equation [2,3, 41-43]. For a large class of systems, the GL equation takes the form
of Eq. (6).

The usual method that one can apply to determine the coefficients of the GL
equation for a particular system is the power decomposition of its dynamical variables
and parameters with respect to the small bifurcation parameter and the separation of the
fast and the slow components.

To perform the decomposition it is important to know the relative scales of variation
for all the considered values. This can be found considering that the GL equaticn is
invariant under the rescaling

p — €2, wix, t) — ewlez, ’t), v — ev, 4n

where e represents a small scaling factor.

For the following it is convenient to substitute U — Us + U and V— Vs + Vinto Eq.
(1), where Ug and Vg are the steady state (2). The equations for the deviations from the
homogeneous steady state then read

- 2
OU LU 0V g+ av e ND W),
ot oz dz? (48)

oV oV BV 2
3}—+UE-—~5;¢5 —BU - A*V - N(U, V),
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where N(U, V) = (B/A)U? + 2AUV + UPV is the nonlinear term.

The fast component may be found as a solution of the linearized equations (48) at
the bifurcation threshold B = By or B = By and at the rescaled flow rate v = ey,. For the
Hopf and the Turing bifurcations one has

Hopf: 0, = Zexp(—-iwﬂt), 49
Turing: U, = zZ exp(ikrz — ievikrt), 50

where Uy, = (UL, V.)™ denotes the solution of the linearized equations (48), wy and kr
are given, respectively, by Egs. (4) and (5), and Z= (Zy,2Zv)T is the corresponding
eigenvector. The norm of this vector determines the amplitude of w and below this is
supposed to be normalized as Z/Z,,.

Now one needs to introduce the new independent time and space variables
corresponding to the dynamics on the different scales 7, = €'t and &, = €'z and substitute
all the differential operators in Eq. (48) by sums of new operators acting on each new
variable separately.

From Eq. (47) we deduce that the slow component w depends on & and 7». In the
Hopf case the fast component depends on ¢ and does not vary in space, see Eq. (49).
Hence the sought solution of Eq. (48) depends on ¢, &, and 7, ie., [J = U(t,&,7:), and
the differential operators must be substituted by
8,0 80 a0
fz 04 Bt Bt Brmy 1)
In the Turing case, as follows form Eq. (50), the fast component depends on z and 7,
ie, U = U(z,7,£&, 7). Hence, the required substitution has the form:

8 8 8 8 8,8

&—ﬁé—i—kﬁég, ~6—£—)551-’;+68T2. (52)

Now one can perform the decomposition
U = ely + €U + €Us, B = By + €B,, v = €y, (53)

and substitute this into Eqs. (48), while accounting also for (51) and (52). Here
U, = wl,,, and U; and ('fg are the high order terms. Collecting the identical powers of €
and moving in the Turing case the terms

o0, . ol
ik (3_7'1 +‘U1E—) (n=1,2..),
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from the equation of order (n + 1) to the equation of nth order, one obtains the linear
equations for [f,, I, and U (The additional redistribution of terms is needed to satisfy

the solvability condition.) Solving these equations consequently one obtain the GL
equation for w, which appears as a solvability condition of the equation for Us.
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