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ABSTRACT

We consider a self-oscillator whose excitation parameter is varied. The frequency of the variation is much smaller than the natural frequency of
the oscillator so that oscillations in the system are periodically excited and decayed. Also, a time delay is added such that when the oscillations
start to grow at a new excitation stage, they are influenced via the delay line by the oscillations at the penultimate excitation stage. Due to
nonlinearity, the seeding from the past arrives with a doubled phase so that the oscillation phase changes from stage to stage according to
the chaotic Bernoulli-type map. As a result, the system operates as two coupled hyperbolic chaotic subsystems. Varying the relation between
the delay time and the excitation period, we found a coupling strength between these subsystems as well as intensity of the phase doubling
mechanism responsible for the hyperbolicity. Due to this, a transition from non-hyperbolic to hyperbolic hyperchaos occurs. The following
steps of the transition scenario are revealed and analyzed: (a) an intermittency as an alternation of long staying near a fixed point at the
origin and short chaotic bursts; (b) chaotic oscillations with frequent visits to the fixed point; (c) plain hyperchaos without hyperbolicity after
termination visiting the fixed point; and (d) transformation of hyperchaos to the hyperbolic form.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0022645

A hyperchaotic attractor has at least two positive Lyapunov expo-
nents, i.e., unlike a simple chaotic attractor, its phase space con-
tains two or more expanding directions. In applications employ-
ing deterministic chaos, hyperchaotic systems are usually more
preferable since their dynamics is more complicated in com-
parison with mere chaotic systems. However, many chaotic as
well as hyperchaotic systems have actually a quasiattractor, i.e., a
limit set containing stable periodic orbits, so that their dynam-
ics is not so stochastic as expected. Good stochastic proper-
ties justified in a rigorous mathematical sense are guaranteed
for the so-called hyperbolic attractors. Systems with attractors
of this type demonstrate strong and structurally stable chaos
that is insensitive to variation of functions and parameters in
the dynamical equations, to noises, to interferences, etc. Our
study in the present paper will be focused on a nonautonomous
time-delay system with a hyperbolic hyperchaotic attractor. This
system operates as two coupled hyperbolic chaotic subsystems.

Varying its parameters, we can control the coupling strength
between these subsystems as well as a mechanism responsible
for their hyperbolic chaos. Due to this, a transition from non-
hyperbolic to hyperbolic hyperchaos occurs. The following steps
of the transition scenario are revealed and analyzed: (a) an inter-
mittency as alternation of staying near a fixed point and chaotic
bursts; (b) wandering between the fixed point and chaotic subset
appears near it; (c) plain hyperchaos without hyperbolicity after
termination visiting the fixed point; and (d) transformation of
hyperchaos to hyperbolic form.

I. INTRODUCTION

Attractors characterized by two or more positive Lyapunov
exponents are called hyperchaotic. The simplest and trivial exam-
ple is provided by several chaotic systems with weak coupling whose
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attractor is a direct sum of partial attractors.1 However, the phase
space dimension in this case is superfluous. The smallest possi-
ble dimension is four: two expanding directions, one contracting,
and one neutral. The first nontrivial hyperchaotic attractor in a
four-dimensional system was proposed by Rössler.2

Many studies were done around hyperchaotic dynamics since
that time, and it still attracts the interest of researchers. In a
recent paper,3 routes of transition to hyperchaotic dynamics asso-
ciated with different bifurcations of periodic and quasi-periodic
regimes are revealed for coupled antiphase driven Toda oscillators.
Garashchuk et al.4 report a study of two coupled contrast agents
being micrometer size gas bubbles encapsulated into a viscoelastic
shell. Such bubbles are used for enhancing ultrasound visualization
of blood flow and have other promising applications like targeted
drug delivery and noninvasive therapy. For the onset of hyper-
chaotic dynamics in this system, a new bifurcation scenario is pro-
posed that includes the appearance of a homoclinic chaotic attractor
containing a saddle-focus periodic orbit with its two-dimensional
unstable manifold. Moreover, it is shown that hypechaotic attractors
are stable with respect to perturbations that destroy the synchroniza-
tion manifold in the considered system. Radiophysical experiments
with hyperchaotic dynamics as well as corresponding theoretical
analysis are reported in Ref. 5. It is shown that as a result of a sec-
ondary Neimark–Sacker bifurcation, a hyperchaos with two positive
Lyapunov exponents can occur in the system. A comparative anal-
ysis of chaotic attractors born as a result of the loss of smoothness
of an invariant curve, period-doubling bifurcations, and secondary
Neimark–Sacker bifurcation is carried out.

Hyperchaotic systems have more than one expanding direction
in the phase space so that their dynamics is more complicated in
comparison with mere chaotic systems. In particular, the prediction
time of hyperchaotic regimes can be much less than that for chaos.6

Thus, hyperchaotic oscillators are employed when the complexity of
a signal is crucial, for example, for secure communications7–10 and
for image encryption.11–14 One more promising application of hyper-
chaotic systems is damage assessment based on using a steady-state
chaotic excitation.15

For applications where complexity is critical, one must take
into account that many chaotic systems actually have a quasiattrac-
tor, i.e., a limit set containing stable periodic orbits, so the observable
dynamics can be not so irregular as expected and be dramatically
sensitive to small variations in parameters. Good scholastic prop-
erties justified in a rigorous mathematical sense are guaranteed for
the so-called hyperbolic attractors. Systems with attractors of this
type, like, for example, the Smale–Williams solenoid, demonstrate
strong and structurally stable chaos that is insensitive to variation of
functions and parameters in the dynamical equations, to noises, to
interferences, etc.16

Hyperbolic attractors are composed exclusively of saddle
trajectories.17–19 For all their points, a space of small perturbations
(tangent space) is split into a direct sum of subspaces that expo-
nentially expand everywhere and contract. In the phase space, these
subspaces are tangent to the corresponding expanding and contract-
ing manifolds. In autonomous flow systems, in addition, there is a
one-dimensional neutral tangent subspace of perturbations along
a trajectory that corresponds to marginally stable shifts in time.
A necessary and sufficient condition of the hyperbolicity is the

absence of tangencies between stable, unstable, and neutral, if any,
manifolds; only intersections at nonzero angles are admitted.

Due to their great potential importance for applications, struc-
turally stable chaotic systems with hyperbolic attractors obviously
have to be a subject of priority interest like rough systems with reg-
ular dynamics in the classic theory of oscillations.20,21 However, for
many years, hyperbolic attractors were commonly regarded only as
purified abstract mathematical images of chaos rather than some-
thing intrinsic to real world systems. A certain progress in this field
has been achieved recently when many examples of physically real-
izable systems with hyperbolic attractors have been purposefully
constructed.16,22

A hyperchaotic system can be hyperbolic. An obvious exam-
ple consists of two ordinary hyperbolic systems with weak coupling.
Due to their structural stability, the hyperbolicity of the subsystems
survives at least when the coupling is small so that the whole system
is hyperbolic and hyperchaotic.

An interplay between hyperbolicity and hyperchaos was stud-
ied in Refs. 23 and 24. Kuptsov and Kuznetzov23 report the sce-
nario of transition to hyperchaos in a one-dimensional spatially
distributed medium with local hyperbolic chaos. When its length
is small, all spatial elements oscillate synchronously and demon-
strate hyperbolic chaos. As the length grows, the second Lyapunov
exponent becomes positive, and spatial homogeneity is destroyed.
But, the hyperbolicity survives so that the system demonstrates a
hyperbolic hyperchaos. Further growth of the length results in the
emergence of the third positive Lyapunov exponent accompanied
by violation of the hyperbolicity.

Kuptsov24 considers the violation of hyperbolicity and transi-
tion to hyperchaos in a chain of diffusively coupled oscillators with
hyperbolic chaos. It is shown that it occurs via an intermittency and
so-called unstable dimension variability (UDV). The UDV regime
is characterized by coexistence in the chaotic attractor of invari-
ant periodic or chaotic orbits with different numbers of unstable
directions.25,26 Since trajectories of the system can pass close to these
orbits, the dimensions of their unstable and stable manifolds vary.
The UDV and intermittency as a part of scenario of transition to
hyperchaos were also reported in Refs. 27–29. Other revealed details
of the transition included a blowout bifurcation and bubbling.

Systems with a time-delay feedback combine simplicity of
implementation and rich complexity of dynamics. Examples of
such systems are wide-spread in electronics, laser physics, acous-
tics, and other fields.30 Recently, several examples were suggested as
physically realizable devices for the generation of rough hyperbolic
chaos.31–36 Though rigorous mathematical proof of their hyperbol-
icity is not performed yet, the hyperbolicity of these systems is
confirmed numerically in Refs. 37 and 38.

Our study in the present paper will be focused on a nonau-
tonomous time-delay system with a hyperbolic attractor suggested
in Ref. 31. As discussed in Ref. 39, varying parameters of this system
one can also obtain hyperbolic hyperchaotic attractors with as many
positive Lyapunov exponents as required. In this paper, we study a
hyperchaotic attractor with two positive Lyapunov exponents. We
perform a numerical test that confirms its hyperbolicity and analyze
the details of transition to hyperbolic hyperchaotic regime.

The paper is organized as follows. In Sec. II, we introduce a sys-
tem and discuss how it operates. Also, we briefly review studying
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methods that are used below. Section III discusses the transition
from non-hyperbolic to hyperbolic hyperchaos. It is divided into
several subsections: Subsection III A is focused on Lyapunov expo-
nents, angle between expanding and contracting subspaces, and
the Kaplan–Yorke dimension; Subsection III B represents two-
dimensional distributions of various characteristic values on the
attractor; in Subsection III C, we deal with the degenerated invari-
ant subsets of the attractor; and Subsection III D discusses the large
timescale behavior of finite time Lyapunov exponents (FTLEs). In
Sec. IV, we outline the obtained results.

II. THE SYSTEM AND METHODS OF ANALYSIS

We will consider a nonautonomous system based on the van
der Pol oscillator of natural frequency ω0 supplied with a specially
designed time-delay feedback,31

ẍ − [A cos(2π t/T) − x2]ẋ + ω2
0x = εx(t − τ)ẋ(t − τ) cos ω0t. (1)

The parameter controlling the oscillator excitation is modulated
with the period T and amplitude A. Modulation is slow, T � 2π/ω0,
so that the positive half-period is sufficiently long for the periodic
oscillations to grow up. Then, the oscillations decay and grow again
at the next excitation stage corresponding to the next positive half-
period of the modulation, see Fig. 1. The main harmonic at the nth
excitation stage can be written as sin(ω0t + φn), where phase φn

is controlled via the delay line. If the retarding time τ is close to
T/2, as shown in Fig. 1(a), the emergence of the self-oscillations at
each stage of activity is stimulated by a signal at the previous activ-
ity stage whose dominating harmonic is sin(ω0t + φn−1). When it
passes through a nonlinear delayed terms, the resonant harmonics

sin(ω0t + 2φn−1) with the doubled phase appears

x(t − τ)ẋ(t − τ) cos ω0t

= ω0 sin(ω0t + φn−1) cos(ω0t + φn−1) cos ω0t

= (ω0/2) sin(2ω0t + 2φn−1) cos ω0t

= (ω0/4) sin(ω0t + 2φn−1) + . . . . (2)

This harmonic determines the phase φn of the new excitation stage
when oscillations start to grow. To avoid its further influence and
allow new oscillations to grow freely parameter, ε is taken small.
As a result, we get a sequence of oscillation trains with phases at
successive excitation stages obeying a chaotic Bernoulli-type map,

φn = 2φn−1 + const mod 2π . (3)

(A constant addition appears since we transfer phase to the begin-
ning of the stage and measure it in the middle.) According to argu-
mentation in Ref. 31, this means that the attractor for the Poincaré
map, which corresponds to states obtained stroboscopically at
tn = nT, is a Smale–Williams solenoid, and the respective chaotic
dynamics is hyperbolic with the first Lyapunov exponent close to
log 2. In Ref. 37, this argumentation is confirmed via numerical test
for τ values between approximately T/4 and 3T/4.

The described mechanism of doubled phase transfer between
excitation stages that results in hyperbolic chaos is reported for the
first time in Ref. 40 and discussed in more detail in Refs. 16 and 22.

As reported in Ref. 39 using longer retarding times, say
τ = 3T/2 that provides the seeding of a new excitation stage from
the stage before the previous one, see Fig. 1(b), it is possible to
observe hyperchaos with two positive Lyapunov exponents. In this
case, the map for phases at successive excitation stages looks as

FIG. 1. Operation of system (1): (a) hyperbolic chaos and (b) hyperbolic hyperchaos with two positive Lyapunov exponents. Polyline arrows show the seeding transfer
between excitation stages, and arc arrows show how the interaction between the subsystems occurs.
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follows:

φn = 2φn−2 + const mod 2π . (4)

The sequence of phases now contains two independent chaotic
sequences whose elements alternate. Thus, system (1) in this case
can be treated as consisting of two weakly coupled hyperbolic
chaotic subsystems whose interaction produces hyperchaotic hyper-
bolic attractor. The subsystems interact on the boundary between
excitations stages see the arc arrows in Fig. 1(b), and the hyperbol-
icity mechanism brings here the seeding with a doubled phase, see
the polyline arrows. The type of dynamics depends on a relation
between amplitudes of these two channels. This can be controlled
by varying τ or T. If τ = 3T/2, as in Fig. 1(b), then the hyperbol-
icity mechanism has the highest amplitude and, thus, dominates
the coupling. In this case, the subsystems operate almost indepen-
dently producing the hyperbolic hyperchaos. If τ ≈ T, then the
hyperbolicity channel is the weakest so that the coupling prevails. In
what follows, decreasing T, we will observe the transition to hyper-
bolic hyperchaos as a result of the decrease of the relative coupling
strength.

In general, for

τ = (k − 1/2)T, k = 1, 2, 3 . . . , (5)

system (1) may be expected to have a hyperchaotic attractor with k
positive Lyapunov exponents equal to k−1 log 2.39

In this paper, we will focus on the case k = 2 for

τ = 12, A = 3, ε = 0.3, ω0 = 2π . (6)

For sufficiently large modulation period, T = 10 dynamics of Eq. (1)
is regular. When T gets smaller, hyperchaotic attractor appears, then
it undergoes certain transformations and finally becomes hyper-
bolic. At T = 8, condition (5) is fulfilled exactly.

Due to the presence of the delay, system (1) is infinite-
dimensional. Dealing with its computational model, we introduce
discretization along time variable so that the dimension of the result-
ing model depends on the number of steps on the delay interval.
Setting the step size 1t = 0.01 and taking the retarding time τ = 12,
we obtain for the second order delay differential equation (1), a
numerical model whose phase space dimension is N = 2402.

We will analyze system (1) numerically using Lyapunov anal-
ysis. In brief, it includes studying of expanding and contracting
properties of perturbation vectors and volumes spanned by these
vectors as the system runs along a trajectory. The perturbation vec-
tors are assumed to be infinitely small in magnitude and form a
linear tangent space. The dimension of this space is equal to the
phase space dimension N.

Globally, i.e., for an infinitely long trajectory, properties of the
tangent vectors are described by a set of Lyapunov exponents λi,
i = 1, 2, . . . N, sorted in descending order. They can be treated in
two ways. On the one hand, the sum of the first k Lyapunov expo-
nents is an average rate of exponential expansion (or contraction,
if negative) of every typical k-dimensional volume in the tangent
space. On the other hand, the nth Lyapunov exponent is an average
rate of exponential expansion of the nth covariant Lyapunov vector
(CLV). These vectors are named “covariant” since nth vector at time
t1 is mapped by a tangent flow to the nth vector at time t2 for any t1

and t2. There is a unique set of N such vectors. An arbitrary tangent

vector does not have this property and merely converges to the first
CLV. Two algorithms for computation of CLVs were first reported
in the pioneering works.41,42 See also Ref. 43 for more detailed expla-
nation and discussion of one more algorithm. Also, see Ref. 44 for a
survey.

Using the Lyapunov exponents, one can compute Kaplan–
Yorke dimension of the attractor,45

DKY = m +

∑m
i=1 λi

|λm+1|
, (7)

where m is such that
∑m

i=1 λi > 0 and
∑m+1

i=1 λi < 0. The
Kaplan–Yorke dimension is related with the information dimen-
sion and is an upper estimate for the Hausdorff dimension of an
attractor.46

The local structure of the attractor can be analyzed using
finite time Lyapunov exponents (FTLEs) `i. There are two dif-
ferent sorts of these exponents. One is obtained in the course
of the standard algorithm for Lyapunov exponents when we iter-
ate a set of tangent vectors and periodically orthonormalize them
using Gram–Schmidt or QR algorithms. Logarithms of their norms
divided by the time step between the orthonormalizations may be
called Gram–Schmidt FTLEs. This sort of FTLEs characterizes local
volume expanding properties in the tangent space. The sum of the
first k Gram–Schmidt FTLEs is a rate of local exponential expansion
of a typical k-dimensional tangent volume. Their individual values
except the first one have no much sense. Another sort of FTLEs
are computed as local exponential expansion rates for CLVs. They
characterize expansion or contraction for individual vectors in tan-
gent space. In more detail, the difference between these two sorts of
FTLEs is discussed in Ref. 47. In what follows, we will consider the
CLV based FTLEs.

Dealing with FTLEs for flow systems, one have to choose an
appropriate time step. This is not so obvious since the choice must
be related somehow with intrinsic attractor time scales that are usu-
ally a priori unknown. One way to put the FTLEs analysis on the
solid ground is to consider them on infinitesimally small times. Such
instant FTLEs were introduced in Ref. 47. For discrete time sys-
tems, however, one can compute one step FTLEs. Since the system
under consideration in this paper operates under external forcing
with period T, it is natural to consider the corresponding strobo-
scopic map for it. Thus, all FTLEs below will be computed for one
step of this map, i.e., for one period T in terms of the original flow
system.

Another way of using FTLEs is to consider them on asymp-
totically long times. For large time scale, the Gram–Schmidt and
the CLV based FTLEs coincide,43 so it is reasonable to use the
Gram–Schmidt ones since they require much less computational
efforts. Due to the decay of correlations for a typical chaotic pro-
cesses on large time scales, pairwise covariances of Lyapunov sums
Li (FTLEs not divided by time step) are expected to grow linearly.
The matrix Dij of the corresponding growth rates is introduced and
studied in Ref. 48. Below, we analyze the covariances and show that
for some parameter values they demonstrate power law instead of
the expected linear growth.

To characterize the hyperbolicity, we will use the angle crite-
rion. Chaotic attractor is called hyperbolic when all its trajectories
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are of saddle type. It means that its expanding and contracting man-
ifolds never have tangencies. Verification of this property can be
done by checking the angles between tangent subspaces spanned by
CLVs corresponding to positive and negative Lyapunov exponents
(or, more rigorously, the smallest principal angle between these sub-
spaces). The angle θi is the angle between a subspace spanned by
the first i CLV and the subspace spanned by all the rest of them.
If a discrete time system has k positive Lyapunov exponents and
all others are negative, then it will be hyperbolic if θk never van-
ish along trajectories on the attractor. As we consider a system with
two positive Lyapunov exponents, the indicating angle is θ2. Notice
that in actual computations starting from random initial conditions,
we will never get exact zero angle. Instead, a typical trajectory can
pass arbitrary close to points with zero angles. Thus, verifying the
hyperbolicity, we can only check if the angles get very small. The fast
method of computation of the angles is developed in Refs.49 and 43.
Its implementation for systems with a single time delay can be found
in Ref. 37, and in Ref. 38, the generalization for the case of multiple
delays is provided.

A chaotic attractor is known to contain invariant subsets, in
particular, periodic orbits, and there are effective numerical methods
for detection these embedded orbits.50–52 Nevertheless, application of
these methods for high-dimensional systems is rather problematic
yet. In this paper, we develop another approach to detect some of
the embedded invariant subsets.

Running along a trajectory we can encounter points where
some of CLVs merge, i.e., the angle between them vanishes. It can
occur either for vectors from unstable and stable subsets or for any
other pair of vectors. Merging two CLVs means that the number
of CLVs in this point is less by one compared to another attrac-
tor points. It means that we have here some degenerated invariant
subsets. To provide a simple illustration assume that the attractor
contains a fixed point with real eigenvalues. CLVs of this invariant

subset are merely its eigenvectors. Let two eigenvalues coincide and
the only one eigenvector corresponds to this degenerated pair (for
example, this is always the case in two-dimensional space). Then,
this will be exactly the situation described above. Thus, running
along an attractor trajectory and collecting points where some of
CLVs merge, we will detect degenerated invariant subsets embedded
into the attractor.

The degenerated subsets can be identified by a signature con-
structed as a list of indexes of merging CLVs. Obviously, we cannot
distinguish two subsets with identical signatures and they will be
treated as a one subset. For each signature, we will compute CLV
based FTLEs, i.e., average rates of exponential growths or decay of
CLVs near the subsets. These partial FTLEs will be plotted against a
control parameter to demonstrate how the subsets are transformed.

III. THE ANALYSIS

A. Lyapunov exponents, Kaplan–Yorke dimension, and

angles between tangent subspaces

First, for system (1) with parameters (6), we consider a minimal
angle, two Lyapunov exponents, and a Kaplan–Yorke dimension as
functions of T decreasing from 10 to 7, see Fig. 2. Near T = 10, there
are no positive Lyapunov exponents, as one can see in Fig. 2(a). It
corresponds to regular oscillations in the system.

Transition to chaos and then to hyperchaos is illustrated in
Fig. 3 where the enlarged area of Fig. 2(a) is shown. One can see
that the dynamics becomes chaotic at approximately T = 9.835.
There is a very narrow area where only one Lyapunov exponent is
positive, and very soon approximately at T = 9.8, the second one
also becomes positive, so the hyperchaotic regime appears. Observe
very small slope of the curve λ2: it goes almost horizontally when
passes zero. This is typical behavior for transition to hyperchaos

FIG. 2. (a) Lyapunov exponents, (b) Kaplan–Yorke dimension, and (c) minimal angle θ2 between expanding and contracting tangent subspaces. Shaded areas A–D highlight
ranges of different attractor types.

Chaos 30, 113113 (2020); doi: 10.1063/5.0022645 30, 113113-5

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 3. Enlarged area of Fig. 2(a) where the transition from chaos to hyperchaos occurs.

owing to the bifurcations of unstable periodic orbits embedded into
attractor.28 In our case, the area where λ2 stays close to zero is very
narrow.

The parameter interval of our interest can be split into four
areas that we mark by capital letters A, B, C, and D, see Fig. 2.
Area A starts when the system becomes hyperchaotic at T = 9.8
and extends to T = 9.58 until the Kaplan–Yorke dimension grows,
see Fig. 2(b). The minimal angle min θ2 between the expanding and
contracting subspaces remains close to zero [see Fig. 2(c)] indicat-
ing non-hyperbolicity of chaos within this area. Area B covers the
range where the Kaplan–Yorke dimension is constant and ends at
approximately T = 9.43. The minimal angle min θ2 is still zero, i.e.,
chaos is non-hyperbolic. Area C stretches up to a point of transi-
tion to hyperbolic chaos, i.e., to a point where the minimal angle θ2

starts to grow. It occurs at approximately T = 9.27. Finally, area D
corresponds to hyperbolic hyperchaos with two positive Lyapunov
exponents. At the boundary of this area, first two Lyapunov expo-
nents approach each other and merge, see Fig. 2(a). As discussed
above, the considered system operates as two identical alternating
chaotic subsystems. The value of T controls their relative coupling
strength with respect to the phase doubling mechanism responsible
for the hyperbolicity, see Fig. 1(b), and the related discussion. Thus,
the hyperbolic hyperchaos in our system emerges when the coupling
strength between the subsystems becomes sufficiently weak so that
they demonstrate almost identical dynamics. The area of hyperbolic
hyperchaos ends at approximately T = 7.02. Beyond this point, the
system remains hyperchaotic within the very narrow interval and
then oscillations become regular.

B. Probability density functions on the attractor

To examine the attractor structure in areas A–D, we will con-
sider now probability density functions (PDFs) of dynamical vari-
ables and related characteristic values, see Fig. 4. Plots in this figure
are grouped in five columns. The first three of them, from (a) to
(c), correspond to the areas from A to C in Fig. 2, and two last
columns (d) and (e) represent area D. Column (d) characterizes a
hyperchaotic hyperbolic attractor close to the transition point and
(e) corresponds to the case when relation (5) is fulfilled exactly for
k = 2, i.e., τ = 1.5T. All plots are computed for the stroboscopic
map at t = nT.

1. Area A

Figure 4(a1,2,3,4) is plotted at T = 9.7 that corresponds to area
A. Panel (a1) shows PDF of x and ẋ/ω0. Since the phase space
dimension is high, these plots can be considered as two-dimensional
projections of multidimensional PDFs. Observe a sharp spike at the
origin visible as a dark spot. The spot is surrounded by a wide pale
area representing wandering of the system in the vicinity of the
origin.

The observed structure of the PDF is caused by intermittency,
see Fig. 5(a). In this figure, we plot the phase space distance of the
orbit to the origin

ρ(t) =

√

x(t)2 + (ẋ(t)/ω0)
2 (8)

for time sliced stroboscopically at t = nT. One can see alternation of
laminar phases when the system is close to zero with burst of oscil-
lations. Figure 6 provides further confirmation of the intermittent
nature of the considered regime. It shows a distribution of lengths
of laminar trajectory cuts when the phase space trajectory is near
the origin. Here and below, power law distributions as well as esti-
mation of the exponent α is done with the help of Python package
“powerlaw.”53 In the log–log scale, the distribution admits linear
approximation that corresponds to the power law. The computed
exponent is α = −1.95.

Figure 4(a2) shows the PDF of ρ and maximal FTLE max `i,
i = 1, 2, . . .. Here and below, FTLEs `i are computed as average
exponential growth rates of CLVs over time T, corresponding to one
step of the stroboscopic map. Since FTLEs strongly fluctuate, they
are usually not ordered in the descent order in contrast to the global
Lyapunov exponents. Hence, on each step, we simply take the largest
one.

The PDF of ρ and max ` in Fig. 4(a2) shows locations of areas
of chaotic divergence on the attractor and areas where close trajec-
tories approach each other. One can see a spike at ρ = max ` = 0. It
corresponds to the laminar phases and indicates that near the origin,
the trajectories basically demonstrate marginal stability. To explain
this, we need to take into account that x = ẋ = 0 is a fixed point
for considered system (1). Linearization near this point results in a
linear equation with parametric excitation with period T. Since the
excitation parameter oscillates symmetrically near zero, on average,
the fixed point at the origin is marginally stable.

Chaos 30, 113113 (2020); doi: 10.1063/5.0022645 30, 113113-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 4. Numerical approximations of probability density functions (2D histograms) on the attractor. Columns (a), (b), and (c) correspond to areas A, B, and C in Fig. 2,
respectively, and columns (d) and (e) correspond to area D. Values of T are given in the legends on the top row and are the same along the columns. Values on the vertical
axis in the leftmost column are the same along rows. Darker areas represent higher densities.

Figure 4(a3) shows the PDF of ρ and the angle θ2 whose zero
indicates a tangency between expanding and contracting manifolds,
i.e., reveals points of the hyperbolicity violation. From Fig. 2(c), we
know that within the area A chaos is non-hyperbolic. And from

Fig. 4(a3), we see that the violation of the hyperbolicity preferably

occurs near the origin: one can see the spike near ρ = 0 where θ2

often vanishes. Beyond the origin, the vanishing angles are more
rare.

Figure 4(a4) represents the PDF of the first two FTLEs `1 and
`2. The dark line along the diagonal near the origin corresponds to

equal `1 and `2. Identical Lyapunov exponents reflect a symmetry of

dynamics with respect to some variables interchange. As discussed
above, see Fig. 1, within the considered parameter range, the system
can be treated as two weakly coupled chaotic subsystems. The stripe

along the diagonal in Fig. 4(a4) indicates that these two subsystems
behave coherently, i.e., synchronized, when pass the origin.

2. Area B

The PDF of x and ẋ/ω0 in area B, see Fig. 4(b1), looks very sim-
ilar to the previous case in Fig. 4(a1). The only difference is a barely
visible darker area surrounding the origin. But actually, it indicates
a qualitative change of the behavior. One can see in Fig. 5(b) that
though a trajectory still often visits the origin neighborhoods, this is
not an intermittency.

The PDF of ρ and max ` in Fig. 4(b2) reveals the emergence
in area B of a new structure. Like in area A, see Fig. 4(a2), we
observe the spike at ρ = max ` = 0 corresponding to the passing of
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FIG. 5. Time series of distances to the origin for (a) T = 9.7, area A and (b) T = 9.5, area B.

a trajectory near the fixed point at the origin. But also, a massive
bulk of points appears at positive max ` and nonzero ρ. It represents
a chaotic subset embedded into the attractor. Thus, in area B, the
dynamics is determined by a wandering of the system between this
chaotic subset and the fixed point at the origin.

The PDF of ρ and θ2 in Fig. 4(b3) again, similarly to the area A,
see Fig. 4(a3), contains the spike near ρ = θ2 = 0 (now barely visible
due to the presence of another maxima) but also a large spot corre-
sponding to a new chaotic subset. Most of points within this spot are
hyperbolic, i.e., located at θ2 > 0.2. However, their noticeable num-
ber is characterized by a vanishing angle: observe getting down to
θ2 = 0 darker arm centered at approximately ρ = 0.2.

The PDF of `1 and `2, see Fig. 4(b4), again contains the diagonal
line near zero mentioned already in area A in Fig. 4(a4) and corre-
sponding to the coherence of the subsystems near the origin. Also, a
very well pronounced is the vertical stripe representing strong fluc-
tuation of the second FTLE `2. The first one `1, on contrary, is well
localized.

Altogether, in area B, a new embedded non-hyperbolic chaotic
subset emerges but the fixed point at the origin is essential yet and
trajectories wander between these two subsets. Due to this wander-
ing, the FTLEs `1 and `2 switch between coherency at the origin and
strong fluctuation of `2 at the chaotic subset. As shown below, the

FIG. 6. Distribution of laminar phases ρ < 0.05 and its power law approximation
with the exponent α = 1.95 that corresponds to Figs. 4(a) and 5(a), area A.

presence of two competing embedded subsets results in anomalous
diffusion of Lyapunov exponents.

3. Area C

Figure 4(c1) corresponds to area C. One can see that a darker
and barely visible circular structure in Fig. 4(b1) is now turned into a
well formed ring where trajectories spend most of time. There is no
maximum corresponding to the fixed point at the origin anymore
but its neighborhood is still visited.

In Fig. 4(c2), we observe that the spike at ρ = max ` = 0 disap-
pears at all, and the origin ρ = 0 is characterized by a positive FTLE.
Thus, the chaotic subset first appeared in Fig. 4(b2) now dominates.
Representing it structure on the PDF becomes sharper in compari-
son with Fig. 4(b2): one can see well defined dark stripe on the plot
indicating that the most probable largest FTLEs decrease as ρ grows.

Figure 4(c3) also confirms disappearance of the structure repre-
senting the fixed point at the origin. The dominating chaotic subset
becomes “more hyperbolic” insofar as the getting down arm near
ρ = 0.2 disappears and less number of points has the vanishing
angle θ2.

In accordance with the changed role of the fixed point, in
Fig. 4(c4), no diagonal stripe is visible representing the coherence
of `1 and `2 at the origin. The only most visited structure is a verti-
cal stripe corresponding to the chaotic subset that now dominates.
Moreover, barely visible are two more features. The first is a pair
of diagonal segments appeared beyond the origin at approximately
`1 = `2 ≈ ±0.15, and the second are darker areas to the left and to
the right from the main vertical stripe representing a more intense
fluctuations of `1. These features are precursors of a hyperchaotic
hyperbolic attractor that appears in the course of further decrease
of T.

4. Area D

Figures 4(d) and 4(e) represent a hyperchaotic hyperbolic
attractor, area D in Fig. 2. The common feature is that trajectories
never visit vicinities of the origin, see Figs. 4(d1) and 4(e1). It means
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that the oscillation phase that is responsible for the hyperbolic chaos
is now well defined.39

Inspection of PDFs in Figs. 4(d1) and 4(e1) reveals two differ-
ent forms of the attractor. At T = 9, i.e., just after the transition
to the hyperbolicity, there are two loops formed by the most vis-
ited points while far from the transition at T = 8, only one main
loop is visible. We recall that hyperchaos in considered system (1)
is the result of interaction of two coupled chaotic subsystems, see
Fig. 1(b) and the related discussion. When T is decreased, the cou-
pling strength between the subsystems becomes weaker while the
hyperbolicity mechanism, related with the phase doubling, becomes
stronger. Comparing Figs. 4(d1) and 4(e1), we can see that it results
in more coherent behavior of these subsystems that manifests itself
as a merge of the two loops.

Visually, the attractor in Fig. 4(d1) looks more complicated
than the attractor in Fig. 4(e1), and one can expect that its dimen-
sion is higher. This intuition agrees with Fig. 4(b): the Kaplan–Yorke
dimension decreases as T is varied within area D from T = 9 to
T = 8.

PDF of ρ and max ` has a single stripe when the coupling
between the chaotic subsystems is stronger at T = 9, see Fig. 4(d2)
while weaker coupling at T = 8 results in two parallel stripes. The
latter indicates that two chaotic subsets may be distinguished in the
phase space, and a trajectory wanders between them. Taking into
account the discussion of Figs. 4(d1) and 4(e1) that at T = 8, the two
subsystems are more coherent, one can assume that these subsets
correspond to synchronized and non-synchronized segments of tra-
jectories. Unlike the case in Fig. 4(b2), these two subsets have similar
properties so that, as we will discuss below, their presence does not
affect the normal convergence of Lyapunov exponents. Also, notice
that most of points in Figs. 4(d2) and 4(e2) are located at positive val-
ues of max `. It means that already locally the fluctuations of FTLEs
are sufficiently weak.

Also, the emergence of the two subsets at T = 8 is visible in
the PDFs of ρ and θ2, see Figs. 4(d3) and 4(e3). In panel d3, we
observe the main dominating structure as a dark horizontal stripe
at the bottom of the plot, while in panel (e3), one also can see one
more horizontal stripe at the top part. It means that the two chaotic
subsets has different distributions of angles between expanding and
contracting manifolds though in both cases the angles are non-
vanishing. The latter again confirms the hyperbolicity of chaos in
area D.

In the PDF for `1 and `2 in Fig. 4(d4), the features barely visible
in Fig. 4(c4) are well pronounced. Both FTLEs fluctuate with almost
identical amplitudes. Both positive and negative values are encoun-
tered but the fluctuations are strongly biased to the positive side.
Prevailing structures are two horizontal stripes representing fluc-
tuations of `1 and two short diagonal segments corresponding to
synchronous oscillations of the two subsystems. Since the presence
of the synchronized segments is revealed only in PDF of `1 and `2,
we conclude that at T = 9, the coherency between the subsystems
occurs but it is week and seldom.

As T is decreased up to 8, the PDFs of `1 and `2 become
symmetric with respect to the main diagonal, see Fig. 4(e4). It
demonstrates the presence of two identical chaotic subsystems that
can oscillate coherently, see the well formed diagonal stripe. But they
do not stay synchronized for all time. Ends of the coherent stages

associated with leaving the symmetric attractor are represented by
symmetric off diagonal structures. Also, notice that the whole area
of FTLEs fluctuations is roughly four times narrower than in the
previous cases and fluctuating FTLEs are preferably positive.

C. Degenerated invariant subsets

When we move along an attractor trajectory and compute
CLVs γi, we can register cases when some of the vectors merge. This
happens when we pass close to a degenerated invariant subset with
smaller number of independent CLVs. Such subsets can be identified
by signatures of the form γi = γj, indicating what vectors coincide,

and characterized by partial Lyapunov exponents λ(part) computed as
averages of the corresponding FTLEs near these subsets.

1. Partial Lyapunov exponents for the degenerated

subsets

Figure 7 represents partial Lyapunov exponents (left column)
and their percentage (right column) for the degenerated subsets. The
latter refers to a number n of encountered points with a certain sig-
nature divided by the total number of the checked attractor points
N = 106 and multiplied by 100. We show signatures with noticeable
percentages only. Those with n ≤ 50 are omitted.

Figure 7(a) represent trajectory points without peculiarities,
i.e., those where no merging of CLVs occurs. As one can see in
panel (a2) that their percentage is close to 100 so that the curves
in Fig. 7(a1) almost coincide with the ordinary global Lyapunov
exponents, cf. Fig. 2(a).

Figures 7(b)–7(d) demonstrate the largest degenerated sub-
sets. Their signatures are γ1 = γ2, γ3 = γ4, and γ5 = γ6, respec-
tively. Their percentages are around 0.1 ÷ 0.2, see panels (b2)–(d2).
Observe that partial Lyapunov exponents in the panels (b1)–(d1) are
similar to those without merging CLVs in Fig. 7(a1). The common
feature of these three cases is that the exponents are either pairwise
coincide or close to each other: 1 and 2, 3 and 4, and 5 and 6. This
is the manifestation of the presence of two chaotic subsystems, see
Fig. 1(b) and the related discussion. Pairwise closeness of the expo-
nents is related with the coherence of these subsystems, discussed
above.

The percentage of the subset γ2 = γ3 in Fig. 7(e) is smaller in
order of magnitude. However, this subset is nevertheless essential.
We recall that the whole attractor has two-dimensional expand-
ing manifold so that the vanishing angle between the second and
the third CLVs indicates the destruction of the hyperbolicity. Thus,
Fig. 7(e1) represents the subset responsible for the violation of the
hyperbolicity. Observe that it disappears in the middle of area C,
before the expected transition to hyperbolicity on the C–D bound-
ary. This is explained in Fig. 7(e2). One can see that the number of
the encountered points monotonically decays within the area C as T
approaches area D. The system visits the subset γ2 = γ3 more and
more seldom so that one have to trace longer and longer trajectories
to detect this subset close to the transition point.

Also, notice that the destructing hyperbolicity subset γ2 = γ3

has the largest percentage in area A. This agrees well with the pre-
vious observations in Figs. 4(a3)–4(e3): the highest maximum of
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FIG. 7. Left panel (a1): Lyapunov exponents computed for trajectory points where no CLV coincide. Other panels below it: partial Lyapunov exponents computed for degen-
erated invariant subsets where some of CLVs coincide, see panel legends. Fat red lines highlight the identical partial Lyapunov exponents corresponding to the merged CLVs.
Right panel (a2) and the panels below: relative size 100 n/N of the subset for that the corresponding left panel is plotted. Here, N = 106 is the total trajectory length, and n is
the number of encountered subset points.

PDF near θ2 = 0 indicating the disappearance of the hyperbolicity
is observed in the area of intermittency A.

The percentage of the subset γ4 = γ5 in Fig. 7(f) is also rel-
atively small. This subset becomes hyperchaotic in area B, and
two largest Lyapunov exponents become almost identical in area

D, when the whole system becomes hyperbolic. Since its second
and third CLVs do not merge, this subset is hyperbolic. Also, it is
located far from the symmetric manifold where the two subsystems
are synchronized since their partial Lyapunov exponents are not
close pairwise as in Figs. 7(b)–7(d). It explains the existence of two
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forms of hyperbolic attractors that where demonstrated in Figs. 4(d)
and 4(e): less coherent attractor [column (d)] exists to the right of
T ≈ 8.5 when the subset in Figs. 7(f) is visited, and it becomes more
coherent [column (e)] when this subset disappears.

2. Bias of global Lyapunov exponents due to the

degenerated subsets

Now, we estimate the overall influence of the degenerated sub-
sets. For each T, we first compute Lyapunov exponents λi as average
of all CLV FTLE encountered along a trajectory. Then, we compute

purified Lyapunov exponents λ
(pure)
i ignoring those FTLEs obtained

at points near the degenerated subsets. Finally, we estimate the
relative bias introduced by the subsets as

δλi =

∣

∣

∣

∣

∣

λi − λ
(pure)
i

λi

∣

∣

∣

∣

∣

. (9)

Figure 8 shows the maximal relative bias computed for six
Lyapunov exponents as max{δλi|i = 1, 2, . . . , 6}. Observe clear dif-
ference of areas A–D. In area A, where the system demonstrates
intermittency, the bias is the highest. Area B is characterized by
the presence of two competing subsets embedded into the attrac-
tor. In the beginning of this area, the bias first drops down but then
grows again. In area C, where the system has chaotic non-hyperbolic
attractor, the bias remains at a constant level.

In area D, where the attractor becomes hyperbolic, we observe
a decrease of the bias. It occurs until the subset γ4 = γ5 is visited,
see Fig. 7(f) so that the hyperbolic attractor has the less coherent
form shown in Fig. 4(d). After the disappearance of this subset, when
the attractor becomes more coherent [see Fig. 4(e)], the bias stays
at more or less constant small level. Small bias due to the degener-
ated subsets is related with structural stability and uniformity of the
hyperbolic attractor, see Refs. 16 and 22 for the discussion of these
concepts.

D. Large time FTLEs

Another approach considers fluctuations of FTLEs on large
times. Large time FTLEs averaged over 1t = θT time intervals will
be denoted as Li.

When oscillations are chaotic or hyperchaotic, computing large
time FTLEs, we deal with sums of nearly independent random
values.48,54 It means that PDF of large time FTLEs is expected to be
Gaussian, and the summation can be treated as a diffusion process
with linear growth of dispersion.48,54 When this is indeed the case,

the diffusion of Lyapunov exponents is said to be normal. Other-
wise, it is anomalous. Below, we will see that the considered system
can demonstrate behaviors of both types.

1. Distributions of large time FTLE

Figure 9 shows PDFs for the first large time FTLE computed
at θ = 256, 1024, and 4096. The left column represents L1 itself and
the right one is for absolute values of deviations of L1 from the mean
〈L1〉 = λ1. In the right column, the logarithmic scale is used on the
vertical axis.

Figure 9(a) corresponds to area A, where the system demon-
strates intermittency and laminar phases obeys power law, see
Fig. 6. Hence, laminar phases of arbitrary lengths can appear with
a nonzero probability, and small L1 can be encountered regardless
of θ . As a result, the corresponding PDF of L1 always has a nonzero
but asymptotically decaying peak at the origin. This is illustrated in
Fig. 9(a1). One can see that this peak is very high at θ = 256, and it
is still visible at θ = 1024. The left tail of the PDF at θ = 4096 does
not reach the origin but this is because the number of points accu-
mulated for computation of PDF is not enough to take into account
very long laminar phases.

If we ignore the left end of the curve, the rest looks Gaussian.
The main its feature, the exponentially decaying tails, is confirmed in
Fig. 9(a2). One can see here that in the logarithmic scale on the ver-
tical axis, the tails of PDFs at θ = 1024 and θ = 4096 decay linearly
that corresponds to the exponential law. This Gaussian form corre-
lates with the uniform distribution of the one step FTLE `1 outside
of the origin, see Fig. 4(a4).

In area B, there are two competing structures in the phase
space: one is the fixed point at the origin and the other is a chaotic
subset, see Fig. 4(b2). Their stability properties are strongly differ-
ent. Wandering between them results in non-Gaussian distributions
of FTLEs. One can see in Fig. 9(b1) that regardless of the averaging
time there is an essential tail spreading to the origin. This tail is also
shown in Fig. 9(b2). One can see here that the deviations decay is
essentially slower than the exponent. To further characterize PDF in
this case, we re-plot it in Fig. 9(b2) in the log–log scale, see Fig. 10.
Linear decay of the tails indicate power law distribution, known as
distribution with heavy tails. The exponents of this distribution α

are given in Fig. 10. One can see that it approaches to 3 as θ grows.
The PDFs in areas C (non-hyperbolic chaos) and D (hyperbolic

chaos) demonstrate plain behaviors, typical for common chaotic
dynamics. The curves are Gaussian, see Figs. 9(c1) and 9(d1), and
their tails decay exponentially, see Figs. 9(c2) and 9(d2). Notice that
this is observed regardless of the presence of the hyperbolicity: the

FIG. 8. Maximal relative bias of Lyapunov exponents due
to the degenerated subsets max{δλi |i = 1, 2, . . . , 6}, see
Eq. (9).
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FIG. 9. PDFs of large time FTLE L1 computed on increasing time scales θ = 256, 1024, and 4096. The log scale is used for the vertical axes in the right column.

Gaussian curves are formed because the attractor does not contain
strongly competing subsets with different stability properties, and
the subset responsible for the violation of the hyperbolicity has small
relative weight, see Fig. 7(e).

2. Diffusion of Lyapunov exponents

Summation of FTLEs in the course of computation of Lya-
punov exponents can be considered as a sort of random walking.

If the summed values are random and independent, the variance
of the sum is known to grow linearly in time. The coefficient
of this growth, a diffusion coefficient, can be considered as one
more characteristic quantifier of chaotic dynamics.48,54 This is the
case for the most of chaotic systems no matter hyperbolic or not,
and it is related with the Gaussian form of PDFs of FTLEs on
large times, see Figs. 9(c) and 9(d). But for non-Gaussian distri-
butions, like the one shown in Fig. 9(b), an anomalous diffusion
occurs.
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FIG. 10. PDF for deviations of L1 on increasing time scales for T = 9.5. The log–log scale is used. Observe power law decay of tails. Estimated values of the exponent α
are (θ ,α) = (1024, 2.24), (2048, 2.28), (4096, 3.16), and (8192, 2.72).

Let Li(θ) = LiTθ be a Lyapunov sum over θ steps, and let
cij = Covar[Li(θ), Lj(θ)] be a covariance of two Lyapunov sums. To
reveal anomalous diffusion, we approximate the time dependence of
the covariance via a power law,

cij = Dθσ . (10)

For a normal diffusion, σ = 1 and D is a usual diffusion coefficient.
In Fig. 11, markers show cij for i, j = 1, 2 as functions of θ in the
log–log scale. Solid lines represent computed approximations. Line
for c12 at T = 9.5 in Fig. 11(c) starts beyond the origin since c12

for smaller θ are negative. Observe that points are very good fitted
to straight lines in the log–log scale. Computed approximation at
T = 8 are

c11 = 0.0025 θ 1.00, c22 = 0.0028 θ 1.04, c12 = 0.00093 θ 0.98, (11)

and at T = 9.5 are

c11 = 0.027 θ 1.27, c22 = 0.044 θ 1.17, c12 = 0.012 θ 1.31. (12)

We see that in area D of hyperbolic chaos at T = 8, the diffu-
sion is normal: σ ≈ 1. The diffusion coefficients D are of the order

10−3. For a non-Gaussian case, T = 9.5 in area B, σ is larger than 1. It
means that here we have anomalous diffusion. But, since σ is never-
theless close to 1, the comparison of D with the case at T = 8 makes
sense yet. We see that it is of order 10−2, i.e., one order higher. Alto-
gether, it indicates much higher amplitude of fluctuations of FTLEs
in the non-Gaussian case.

IV. OUTLINE AND DISCUSSION

In this paper, we have considered a nonautonomous time-delay
system whose excitation parameter is periodically modulated so that
the system produces a sequence of oscillation pulses. Due to a spe-
cially tuned nonlinear mechanism, the phase of the oscillations is
doubled after each modulation period. As a result, a stroboscopic
map for this system demonstrates hyperbolic chaos. By varying the
relation between the delay time and the excitation period, one can
observe a transition to regime (a) when this map operates as two
weakly coupled chaotic subsystems excited alternately. The overall
dynamics in this case still being hyperbolic becomes hyperchaotic
with two positive Lyapunov exponents.

FIG. 11. Power law approximation Dθσ , see Eqs. (11) and (12) for numerical values. Only four last points are used for computing the approximations.
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We have analyzed the transition to this hyperbolic hyperchaos
and revealed the following scenario. After regular oscillations, the
hyperchaos appears almost immediately. An area with a single pos-
itive exponent is very narrow. Then, the following hyperchaotic
regimes take place sequentially: (a) intermittency as an alternation
of staying near a fixed point and chaotic bursts; (b) competition
between the fixed point and chaotic subset which appears near it;
(c) plain hyperchaos without hyperbolicity after termination visiting
neighborhoods of the fixed point; and (d) transformation of chaos to
hyperbolic form.

The competition in regime (b) results in a non-Gaussian dis-
tribution of large time FTLE with power law tails and power law
growth of Lyapunov sums. This type of behavior related with wan-
dering of trajectories near subsets with different numbers of expand-
ing directions is called unstable dimension variability (UDV). Usu-
ally, it is observed as a part of scenario of destruction of chaotic
synchronization of two subsystems.27 In our case, we also can talk
about two chaotic subsystems with rather nontrivial interaction. The
UDV effect is observed for them as their effective coupling strength
is decreased.

The transition to hyperbolic hyperchaos (d) is accompanied
by vanishing of the embedded into the attractor non-hyperbolic
chaotic subset, that we have detected using covariant Lyapunov vec-
tors. The hyperbolic hyperchaos in turn is found to be of two types.
The difference is due to the presence of the degenerated hyperbolic
chaotic subset. When it is visited by trajectories, the attractor gets
more complicated structure with higher Kaplan–Yorke dimension,
and after its vanish, the system operates just as two weakly coupled
identical hyperbolic chaotic subsystems.
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