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Abstract. A non-autonomous model of the Anishchenko-Astakhov generator in the regime 

of periodic and chaotic self-oscillations is considered. A periodic sequence of short pulses is 
considered as an external force. It is shown that the synchronization picture is close in structure 
to the classical synchronization picture observed in a two-dimensional system, but the pulse 
action leads to the excitation of chaotic oscillations, including those characterized by a different 
spectrum of Lyapunov exponents. In particular, it is shown appearance of hyperchaos and chaos 
with additional close to zero Lyapunov exponent. Phenomenological scenarios for the 
development of multi-dimensional chaos related to destruction of two-frequency tori are 
described. Hyperchaos is formed via hierarchy of discrete Shilnikov attractors arise as a result of 
sequence of Neimark-Sacker bifurcations. Chaos with additional close to zero Lyapunov 
exponent occurs as impact of saddle tori appeared via sequence of torus-doubling bifurcations. 
 
Keywords: non-autonomous system; pulsed action; multi-dimensional chaos; Lyapunov 
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1. Introduction 
 

Synchronization of self-oscillatory systems is a classical problem of oscillation and wave 
theory, which is reflected in various fields of science and applications [1-3]. When an external 
signal is applied to a self-oscillatory system, the classical phenomenon of synchronization is 
observed. In this case, there is a set of synchronization tongues on the parameter plane of the 
external force: amplitude - period. These synchronization tongues correspond to the rational ratio 
of the own frequency of self-oscillations to the frequency of external force. The simplest case for 
such a situation is a two-dimensional self-oscillatory system on which an external signal is 
applied. In this case the non-autonomous system has a three-dimensional phase space, and more 
complex oscillatory regimes, such as chaotic can develop [4]. In the case when the autonomous 
system has dimension more than two, its autonomous dynamics can be more various, including 
quasi-periodic and chaotic oscillations. In the case of applying an external signal to chaotic 
oscillations, we can talk about the well-known phenomenon of synchronization through 
suppression of its own chaotic dynamics, and also about chaotic synchronization [5-6]. Also, the 
action can initiate various new effects for systems with dimension 3 or more, including 
excitation of multi-dimensional chaos. In works [7-9] it was shown that for three-dimensional 
systems the synchronization picture depends on the direction of action of the external signal on 
the example of the Rössler system under periodic force. The possibility of torus appearance and 
their bifurcation was also shown. 

A specific case of interest is when the external force has the character of short in duration 
but significant in amplitude pulses. This type of external force is widespread in various fields of 
science, including applied ones. Big interest for this kind perturbation can be found in biology 
and medicine, since different manipulations (for example, injection), or taking pills changes state 
of object almost impulsively. One of the important problems it is vaccination which can be 
considered from different point of view and for different diseases [10-14]. Other medicine 
problems were considered in [15-16], which relate to pulsed external force. With pulses it is 



possible to simulate a fast interacting systems, like neurons, lasers [17-19]. One also can meet 
pulsed forces in different engineering problems [20-22]. In some cases such type of external 
force can stabilize trajectories going to divergence [23]. 

In this work, we consider the features of a three-dimensional non-autonomous system with 
a single equilibrium point using as an example model of the Anishchenko-Astakhov generator, 
illustrate the possibility of the emergence of chaotic behavior, including multi-dimensional chaos 
in the case of periodic autonomous oscillations in the system, and in the case of chaos. We 
focuses on the example which is enough simple (it has single equilibrium point, and can be 
implemented as a self-oscillatory generator), but can demonstrate development of chaos. The 
novelty of the work is analysis of different types of chaotic behavior and description of scenarios 
for them formation. The obtained results can be applied for engineering problems: the pulsed 
action can control behavior of the system [23-25]. 

The work is structured as follows. In Section 2, as a review we present the result of the 
study of the van der Pol oscillator under periodic impulse force as a classical synchronization 
picture of a self-oscillatory system by a periodic sequence of short pulses. In Section 3, we 
present the main object of study: model of the Anishchenko-Astakhov generator; briefly describe 
the dynamics of the autonomous system and illustrate the dynamics of the model for selected 
operating parameters. In Section 4, we describe the synchronization picture for the Anishchenko-
Astakhov generator under periodic pulse action in the self-oscillation mode, discuss the 
possibility of the development of multi-dimensional chaos and explain the phenomenological 
and bifurcation scenarios of its development. In Section 5, we present the results of modeling the 
Anishchenko-Astakhov system in chaos mode with periodic impulse force. Section 6 provides 
the main conclusions. 

 
2. Classic synchronization picture with a periodic pulse signal on the example of van der 
Pol oscillator 

One of the classical self-oscillatory systems is the van der Pol oscillator [26, 27]. The 
mathematical model of the van der Pol oscillator has the following form: 
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Here λ is a parameter responsible for the excitation of self-oscillations in system (1), ω0 is a 
parameter that determines the own frequency of self-oscillations of the oscillator (1). A 
supercritical Andronov-Hopf bifurcation occurs at λ=0, as a result of which a stable equilibrium 
point becomes an unstable focus and a stable limit cycle is born. Figure 1a shows an example of 
a limit cycle for λ=1, ω0=1. 

Let us apply an external impulse force to the oscillator and rewrite a system in form of the 
first order ordinary differential equations: 

,)()(

,

1

2
0

2 








n

nTtAxyxy

yx





      (2) 

where A is the amplitude, T is the period of the external force, n is the pulse number. 
 



 
Fig.1. Synchronization picture of non-autonomous van der Pol oscillator excited by sequence of periodic 
pulses (2). a. Chart of dynamical regimes; b. Chart of Lyapunov exponents. Parameters: λ=1, ω0=2π. P is periodic 
oscillations; Q2 is two-frequency quasi-periodic oscillations; C is chaotic oscillations 
 

Figures 1a and 1b show a chart of dynamical regimes and chart of Lyapunov exponents of 
model (2). The chart of dynamical regimes was constructed as follows: the parameter plane was 
scanned with a small step. For each point of the parameter plane, the regime was determined by 
the number of fixed points in the stroboscopic section1. Parameter plane points corresponding to 
periodic regimes were colored in different colors (the palette at the bottom of the chart is used 
for all chart of dynamical regimes). If the number of points in the stroboscopic section was more 
than 120, then we conclude that the observed regime is non-periodic and such point is colored in 
gray. Initial conditions were chosen fixed for A=0 as x0=0.5, y0=0.51. With increasing amplitude 
for the next value we use initial conditions from previous value of parameter A, in corresponding 
with [28]. Such technique can help to detect multistability in the system. The chart of Lyapunov 
exponents was constructed in a similar way, but when choosing the color of a point on the 
parameter plane, the full spectrum of Lyapunov exponents was analyzed. Lyapunov exponents 
were calculated according to the algorithm proposed in [29] with the Gram-Schmidt 
orthogonalization. Note, that in our numerical experiments, we determined so-called “finite-time 
local Lyapunov exponents” [30, 31]. Note that the spectrum of Lyapunov exponents was 
calculated for map in the stroboscopic section; therefore, one of the exponents, responded for the 
external force, always equal to zero, and it was not taken into account in the analysis. 
Classification of observed regimes was carried out in accordance with the following rule: 

- periodic oscillations, P,  (0> Λ1> Λ2); 
- two-frequency quasi-periodic oscillations, Q2, (Λ1=0, 0> Λ2); 
- chaotic, C, (Λ1>0, 0> Λ2). 
On the charts we clearly see the classic synchronization picture of a self-oscillatory system 

by external force. When the signal amplitude is small, two-frequency quasi-periodic oscillations 
arise, into which a system of synchronization tongues is built. In this system, one can distinguish 
the main tongues (period-1), which have their bases at points where the frequency (period) of 
self-oscillation coincides with the frequency (period) of external force. Tongues on 
subharmonics are also clearly visible when the frequencies ratio corresponds to some rational 
number. On the chart of Lyapunov exponents one can detect small areas of chaotic behavior that 

                                                 
1 For solving all ordinary differential equations in the work we use 4th degree Runge-Kutta methods with step 
integration less then 10-2. 



arise when synchronization tongues overlap. Areas of chaos are localized in the parameter space 
and at large values of the amplitude of the external signal, complex dynamics do not develop and 
periodic self-oscillations are observed. In works [4, 32-33] you can find a detailed description of 
the synchronization picture of a van der Pol oscillator excited by a pulse signal. 
 
3. Objects and methods of research: autonomous and non-autonomous model of the 
Anishchenko-Astakhov generator 

The main object of our study is a self-oscillatory system with a three-dimensional phase 
space - the model of Anishchenko-Astakhov generator [34], which is described by a system of 
three ordinary differential equations in the following form: 
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where the function Φ(x) is a piecewise linear function defined as follows: Φ(x) = 0, for x≤0 and 
Φ(x) = 1, for x>0. This model can be represented as a harmonic oscillator with an additional 
variable that modulates dissipation in the system: 
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In this notation, it is clearly seen that the parameter m is responsible for dissipation in 
model (2), and the parameter g is responsible for the nonlinear feedback circuit. In model (3) 
there is a single trivial equilibrium point for which expressions for the eigenvalues can be 
obtained:  
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Assuming the parameters are positive: m, g >0, we can conclude that the only equilibrium point 
is a saddle-focus with a two-dimensional unstable manifold. In this case, the parameter g is 
responsible for compression along a one-dimensional stable manifold, and the parameter m is 
responsible for the unwinding of trajectories in a two-dimensional subspace. For m>2, the 
saddle-focus equilibrium state is transformed into a saddle-node, while the dimensions of the 
stable and unstable manifolds remain the same. When m=0 in model (3), an Andronov-Hopf 
bifurcation occurs, as a result of which a stable limit cycle is born. Figure 2 shows the 
bifurcation diagram (Fig. 2a), obtained using the numerical bifurcation analysis package 
XPPAUT [35], and the bifurcation tree (Fig. 2b). The diagram shows the dependence of the x-
coordinate of equilibrium point and the maximum amplitude of the cycle on the variable m, and 
the colors also indicate the stability and types of equilibrium point and cycles (in the caption to 
Fig.2 a decoding is given). The bifurcation tree demonstrates the same dependence, but for 
attractor points in the Poincaré map with a cross-section plane x=0. Figure 2b also shows plots of 
the two largest Lyapunov exponents (red and green color, the scale for Lyapunov exponents is 
depicted on the right of the Fig.2b). So, we can observe the development of chaos in the system. 
The bifurcation tree and Lyapunov exponents clearly shows the classical cascade of period-
doubling bifurcations, which leads to the appearance of a chaotic attractor near a saddle-focus 
equilibrium point with a two-dimensional unstable manifold. 

 



 
Fig.2. Dynamics of autonomous model of the Anishchenko-Astakhov generator (3). Parameters: g=0.5. a. 
bifurcation diagram (red/black color is a stable/ an saddle equilibrium point; green/blue is a stable/saddle limit 
cycle); b. bifurcation tree (black points, yS) and plots of the two largest Lyapunov exponents (red and green lines, 
Λ1, Λ2); c.-d. phase portraits: c.  m=0.6; d. m=1.2; e. map in the Poincaré section by the plane x=0, m=1.2. AH is 
Andronov-Hopf bifurcation; PD is period-doubling bifurcation; SN is saddle-node bifurcation 
 

We choose two points, which are marked with arrows in Fig.2b, as operating parameters to 
study the dynamics of a non-autonomous system. For m=0.6 model (3) demonstrates stable 
periodic self-oscillations; Fig.2c shows this attractor. The oscillation period for the selected 
parameter is T ≈ 6.15. The second value of the parameters corresponds to the chaotic behavior of 
the model at m=1.2, the corresponding attractor and his stroboscopic section presented in Fig.2d 
and 2e. 

Let us move on to the description of the non-autonomous model. The model of the 
Anishchenko-Astakhov generator under periodic pulse action can be written as follows: 
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As well as for the van der Pol oscillator (2), here A, T are the amplitude and period of the 
external signal, n is the number of the pulse in the sequence. We added the external force to the 
second equation, since the y-variable represents the coordinate, in accordance with (4) and the 
analogy with the van der Pol oscillator. 

We also use the chart of dynamical regimes and the Lyapunov exponent chart methods as 
the main research tool. The spectrum of Lyapunov exponents makes it possible to distinguish 
regions with quasi-periodic and chaotic dynamics for a four-dimensional model, as well as to 



classify different types of chaos. The non-autonomous model (6) has a four-dimensional phase 
space; therefore, the full spectrum of Lyapunov exponents of such a system has 4 exponents. We 
also calculate Lyapunov exponents for stroboscopic section, which gives three significant 
Lyapunov exponents, excluding zero from the spectrum. Then in model (6), depending on the 
values of the Lyapunov exponents, the following types of dynamic behavior can be classified: 

- periodic oscillations, P,  (0> Λ1> Λ2> Λ3); 
- two-frequency quasi-periodic oscillations, Q2, (Λ1=0, 0> Λ2> Λ3); 
- three-frequency quasi-periodic oscillations, Q3, (Λ1= Λ2=0, 0> Λ3); 
- chaotic, C, (Λ1>0, 0> Λ2> Λ3); 
- hyperchaotic, HC, (Λ1> Λ2>0, 0> Λ3). 
- chaotic with additional zero (close to zero) Lyapunov exponent, C0, (Λ1>0, Λ2=0, 0> Λ3). 

Let us move on to studying the behavior of model (6). 
 

4. Pulses action on the model of Anishchenko-Astakhov generator in the regime of periodic 
self-oscillations 
4.1. Synchronization picture: main dynamical regimes, structure of parameter plane 

First, we consider the picture of dynamical regimes when external force applied to a model 
with periodic self-oscillations. Figure 3 shows a chart of dynamical regimes and a chart of 
Lyapunov exponents at g=0.5, m=0.6. We used the parameters of the external signal as control 
parameters: period, T and amplitude, A. The starting initial conditions were fixed as x0=0.5, 
y0=0.51, z0=0.52 for A=0, with increasing amplitude for the next value we use initial conditions 
from previous value of parameter A. The synchronization picture is close to that for the classical 
van der Pol oscillator (Fig. 1). Synchronization tongues of period-1 are observed at small 
amplitudes of external force. The bases of these tongues leave the points where the period of the 
external signal is a multiple to the period of self-oscillations of the model (3). The exit from the 
synchronization tongue corresponds to the saddle-node bifurcation and the change of the 
dynamical regime to two-frequency quasi-periodic oscillations. It is possible to detect tongues of 
regular oscillations with different periods within quasi-periodic oscillations. These are the so-
called synchronization tongues at subharmonic frequencies. The tongues widen and overlapping 
with increasing amplitude of the external force and the torus collapse with the formation of 
chaotic oscillations is observed. In this case regions of complex behavior are localized in the 
parameter space. Stabilization of periodic self-oscillations occurs at a sufficiently large signal 
amplitude. It is precisely these characteristic features that can be observed in the non-
autonomous van der Pol oscillator. 

Let us study in more detail the areas of complex behavior. The charts clearly show that 
chaotic oscillations in the parameter plane occupy small regions, while they have two thresholds 
for the amplitude of the external signal: quasi-periodicity is observed below the overlap line of 
synchronization tongues. The upper threshold for the occurrence of chaos corresponds to various 
scenarios for its development as the signal amplitude decreases, which we consider further in 
Section 4.2. In this case, the dimension of the phase space of model (6) is greater than that of the 
van der Pol oscillator, which creates the possibility for the development of multi-dimensional 
chaos in a non-autonomous system. On the chart we can see to the left of the synchronization 
tongue at the base frequency a small area of hyperchaos (marked by a rectangle in Fig. 3b). Note 
that multidimensional chaos is destroyed with increasing period of the external signal, and we 
see only chaos with one positive and one zero Lyapunov exponent in the vicinity of doubled and 
tripled frequencies. We consider the features of the multi-dimensional chaos formation in 
Section 4.3. 

 



 
Fig.3. Synchronization picture of non-autonomous model of Anishchenko-Astakhov generator (6) in the 
regime of periodic self-oscillations. a. Chart of dynamical regimes; b. Chart of Lyapunov exponents. Parameters: 
g=0.5, m=0.6. P is periodic oscillations; Q2 is two-frequency quasi-periodic oscillations; Q3 is three-frequency 
quasi-periodic oscillations; C is classical chaos; HC is hyperchaos; C0 is chaos with additional zero (or close to 
zero) Lyapunov exponent 
 

4.2. Upper threshold for the occurrence of chaos with amplitude decreasing  
On the chart of dynamical regimes, as the signal amplitude decreases, three types of 

bifurcations that occur with the limit cycle can be observed: (i) period-doubling bifurcation; (ii) 
saddle-node bifurcation; (iii) Neimark-Sacker bifurcation. Saddle-node bifurcation occurs when 
leaving the synchronization tongue; as a result a pair of cycles merges and the dynamical mode 
is transformed into quasi-periodic, or chaotic. At the same time, chaos was formed as a result of 
some other scenario, which is associated with the period-doubling bifurcation or the Neimark-
Sacker bifurcation. 

Areas of chaos are formed before the appearance of periodic oscillations. This feature is 
due to the fact that in these areas the synchronization tongues at subharmonics overlap and 
merge. The period-doubling bifurcation lines are well traced on the chart, through which you can 
put a route on the parameter plane to the period-2 synchronization tongue. A decrease in 
amplitude within each tongue leads to the development of chaos either through a cascade of 
period-doubling bifurcations or through a Neimark-Sacker bifurcation. Figure 4 shows an 
enlarged fragment of the chart of Lyapunov exponents in the vicinity of the synchronization 



tongue at T≈3T0. To the left of the period-2 tongue, a cascade of period-doubling bifurcations 
and the development of chaos can be clearly seen. However, this chaos is not multi-dimensional. 

 

 
Fig.4. Structure of parameter plane near area of chaos formation of non-autonomous model of Anishchenko-
Astakhov generator (6). a. Chart of dynamical regimes; b. Chart of Lyapunov exponents. Parameters: g=0.5, 
m=0.6. P is periodic oscillations; Q2 is two-frequency quasi-periodic oscillations; Q3 is three-frequency quasi-
periodic oscillations; C is classical chaos; HC is hyperchaos; C0 is chaos with additional zero (or close to zero) 
Lyapunov exponent 
 

A Neimark-Sacker bifurcation line based on the period-1 cycle locates to the right from the 
period-2 synchronization tongue, a family of synchronization tongues of different periods is 
observed along the bifurcation line, the overlap of tongues can lead to the development of 
hyperchaos, in Fig. 4b this area is marked with the symbol HC. Thus, multi-dimensional chaos is 
also observed for large values of the period of external force, but the areas with such dynamics 
are very small in the parameter plane. 
 
4.3. Multi-dimensional chaos formation 

Let us consider the features of the multi-dimensional chaos formation in model (6). Multi-
dimensional chaos is formed as a result of the destruction of a two-frequency torus. As 
mentioned earlier, by multi-dimensional chaos we mean chaotic attractors, which are 
characterized either by several positive Lyapunov exponents, or the spectrum has additional zero 
(or close to zero) exponent. Both types of such multi-dimensional chaos can arise as a result of 
the destruction of a two-dimensional invariant torus. In the case of a four-dimensional flow 



model, there can be only two types of multi-dimensional chaos in dependence on Lyapunov 
exponents spectrum signature: (i) hyperchaos (+, +, 0, -); (ii) chaos with an additional zero 
Lyapunov exponent (+, 0, 0, -). In recent works [36-42] new scenarios for the development of 
these kinds of attractors through the destruction of a two-dimensional invariant torus were 
shown. 

The key point for the formation of chaotic attractors of various types is the accumulation of 
the set of cycles that forms the skeleton of a chaotic attractor. Thus, the skeleton of a classical 
chaotic attractor consists of saddle cycles with a one-dimensional unstable manifold. These are 
cycles with a two-dimensional unstable manifold for hyperchaos. For a four-dimensional system, 
we can assume two types of bifurcations that give such cycles: (i) Neimark-Sacker bifurcation of 
a stable cycle; (ii) period-doubling bifurcation of a saddle cycle with a one-dimensional unstable 
manifold. 

The situation is more complex for chaos with an additional zero Lyapunov exponent. One 
of the possibilities for creating trajectories characterized by such a spectrum of Lyapunov 
exponents is the formation of a set of saddle tori with a one-dimensional unstable and two-
dimensional neutral manifold. The torus doubling bifurcation may lead to the appearance of such 
torus. A smooth invariant torus loses stability as a result of period-doubling bifurcation, torus 
becomes a saddle. It has a one-dimensional unstable manifold, while a two-dimensional neutral 
manifold can be preserved and a stable ergodic torus of double period is born in its 
neighborhood. A cascade of tori-doubling bifurcations forms a set of saddle tori. As a result of 
the absorption of saddle tori by a chaotic attractor and provided that they are preserved, 
additional zero Lyapunov exponents (or close to zero) may appear in the spectrum of exponents 
of such an attractor, the number of which depends on the dimension of the torus [42]. Such 
attractors were first shown on examples of maps and non-autonomous systems in [43-44] and 
were called quasi-periodic Hénon-like attractors. They represent the product of the Hénon 
attractor and the torus. Another possibility for the formation of saddle tori is the loss of 
smoothness of a three-dimensional ergodic torus [41]. Recent work has described a similar 
scenario for coupled flow systems [41-42] and also in other applications [45]. 

Let us consider the features of the formation of multidimensional chaos in our model. A 
small area of hyperchaos appeared as a result of the destruction of the torus identifies in Fig.4b. 
The area of multi-dimensional chaos for small values of period of external force is most 
pronounced in Fig. 3b to the left of the period-3 synchronization tongue (in Fig. 3b this area is 
marked with a rectangle). Figure 5a shows a zoomed fragment of the chart of Lyapunov 
exponents. The chart clearly identifies the Neimark-Sacker bifurcation line (lNS), the period-
doubling bifurcation lines (lPD), and the saddle-node bifurcation line (lSN). Along the Neimark-
Sacker bifurcation line, a system of synchronization tomgue embedded in the region of two-
frequency quasi-periodicity is visible. Within the tongue, it is possible to trace cascades of 
period-doubling bifurcations of stable cycles and the development of classical chaos, which then 
develops into hyperchaos. There are also secondary Neimark-Sacker bifurcations within 
synchronization tongues, which lead to the development of a hierarchy of hyperchaotic attractors 
[39]. On the chart it is possible to trace the bifurcation line of invariant torus doubling. This line 
can be identified using the rigorous analysis of Lyapunov exponents proposed in [46-47]. Before 
and after bifurcation threshold, a stable two-dimensional torus is observed in the system, which 
is characterized by two zero Lyapunov exponents, the third exponent also becomes zero at the 
moment of bifurcation. Thus, thin blue lines2 in the region of two-dimensional tori correspond to 
tori doubling bifurcations (lTD). So, there is an opportunity for the development of chaos with an 
additional zero Lyapunov exponent in accordance with the scenario described above. 

 

                                                 
2 Blue color corresponds to the equality of three the largest Lyapunov exponents to zero. 



 
Fig.5. Development of multi-dimensional chaos in non-autonomous model of Anishchenko-Astakhov 
generator (6). a. – c. Zoomed fragments of chart of Lyapunov exponents. Parameters: g=0.5, m=0.6. lNS is line of 
Neimark-Sacker bifurcation; lPD is line of period-doubling bifurcation; lSN is line of saddle-node bifurcation; lTD is 
line of torus-doubling bifurcation 
 

Figure 5b and 5c show fragments demonstrating details of the parameter plane structure. 
The fragment in Fig. 5b depicts the features of the hyperchaos formation. The fragment in Fig. 
5c makes it possible to trace several torus doubling bifurcations and a region of chaos with an 
additional zero (or close to zero3) Lyapunov exponent. 

Let us analyze the scenario for the development of chaos using graphs of Lyapunov 
exponents and maps obtained with the stroboscopic section. Figure 6 shows the corresponding 
illustrations for T=4.47 (Route A in Fig. 5a). Route A crosses an area of hyperchaos within a wide 
range of the parameter A. Chaotic behavior, including hyperchaos, is well identified on the graph 
of Lyapunov exponents (Fig. 6a); it is localized in a certain interval according to the parameter. 
Periodic and quasi-periodic oscillations are observed for larger and smaller values of the 
parameter A. The external force in a non-autonomous system excites two-frequency quasi-
periodic oscillations, which we observe for small values of the amplitude of the external signal. 
The torus loses its smoothness at A≈0.625 and the oscillations become chaotic. 

Figure 6b shows an enlarged fragment of the Lyapunov exponents graphs, where one can 
track the development of classical chaos through the loss of smoothness of the torus, which is 
accompanied by the appearance of synchronization tongues. Figures 6c and 6d show 

                                                 
3 When constructing charts, we used the following threshold to determine zero: |Λi|<3*10-3. 



corresponding examples of an invariant curve and a chaotic attractor in a stroboscopic section for 
small amplitudes of external force. 

 

 
Fig.6. Development of hyperchaos in non-autonomous model of Anishchenko-Astakhov generator (6). 
Parameters: g=0.5, m=0.6, T=4.47 (Route A in Fig.5a). a., b., e. Graphs of the two largest Lyapunov exponents; c., 
d., f. – m. Maps in stroboscopic section: c. A=0.62; d. A=0.643; f. A=0.887; g. A=0.888; h. A=0.89; i. A=0.9; j. 
A=0.91; k. A=0.94; l. A=0.98; m. A=1.25. NS is Neimark-Sacker bifurcation; SN is saddle-node bifurcation 
 

Hyperchaos develops with a further increase in the amplitude of external force A. Figure 6e 
shows a fragment of the graph of Lyapunov exponents at the threshold of the hyperchaos 
formation. The two-frequency torus becomes resonant at a certain value of the parameter A. A 
stable limit cycle of period-4 appears (P4 in Fig. 6e). This cycle undergoes a Neimark-Sacker 
bifurcation and a stable invariant curve is born in the vicinity of each fixed point in the 
stroboscopic section. On the graph of Lyapunov exponents we see the emergence of two-
frequency quasiperiodic oscillations (T4 in Fig. 6e). A further increase in amplitude leads to a 
new resonance, which corresponds to a 6-fold resonance on a 4-component torus (P24 in Fig. 6e). 
There is a secondary Neimark-Sacker bifurcation with this cycle. This bifurcation is 
demonstrated in an enlarged fragment of the graph in Fig. 6e; the interval where a stable ergodic 
torus (T24), which is represented by 24 invariant curves in the stroboscopic section, is clearly 
visible. Then resonance arises again, and 11 fixed points appear on each invariant curve in the 
stroboscopic section, which corresponds to a stable limit cycle of period 264 (4*6*11, P264). The 
destruction of the torus occurs after this cycle and classical chaos arises. Figure 6f shows an 



example of a classical chaotic attractor. This is a 48 component attractor. The enlarged fragment 
clearly shows that the attractor is distanced from the saddle-focus cycle of period 264. Then the 
regime is transformed into hyperchaos through homoclinic bifurcations of saddle-focus cycles 
with a two-dimensional unstable manifold. Figure 6g shows an example of an already 
hyperchaotic attractor. Hyperchaos is a 24-component attractor, it includes a saddle-focus cycle 
of period 264, and we also see in the enlarged fragment that each component of the attractor is 
filled with points inside, respectively, the attractor also includes a saddle-focus cycle of period 
24. Table 1 shows the values Lyapunov exponents for the presented attractors, which confirm the 
emergence of hyperchaos. Figure 6h shows a 4-component hyperchaotic attractor, including a 
saddle-focus cycle of period 24. A homoclinic bifurcation occurs with a further increase in 
amplitude. The period 4 saddle-focus cycle is absorbed as a result of this bifurcation (Fig. 6i). 
Figure 6k depicts one-component hyperchaotic attractor that does not include a period-1 saddle-
focus cycle: 4 components merge into one with a further increase in amplitude. Figure 6l shows 
an example of an attractor after the bifurcation of the emergence of a homoclinic orbit between a 
saddle-focus cycle of period-1 and a chaotic attractor. Figure 6m demonstrates an example of a 
similar hyperchaotic attractor, which occurs for large amplitudes of external force. Its 
development can also be tracked from a two-frequency torus with a decrease in signal amplitude. 

 

Table 1. Values of the Lyapunov exponents for different chaotic attractors observed in non-autonomous model of 
Anishchenko-Astakhov generator (6) at the threshold of hyperchaos formation, g = 0.5, m = 0.6 
T A Λ1 Λ2 Λ3 Λ4 
4.47 0.643 0.0171 0.0 -0.0124 -1.6703 
4.47 0.887 0.0071 0.0 -0.0078 -1.6432 
4.47 0.888 0.0121 0.0011 0.0 -1.6571 
4.47 0.89 0.0188 0.0075 0.0 -1.6723 
4.47 0.9 0.0383 0.0267 0.0 -1.6913 
4.47 0.91 0.0579 0.0325 0.0 -1.6621 
4.47 0.94 0.1147 0.0567 0.0 -1.6273 
4.47 0.98 0.1522 0.0518 0.0 -1.5840 
4.47 1.25 0.1410 0.0242 0.0 -1.3913 
 

Thus, the formation of a hierarchy of discrete chaotic Shilnikov attractors, which are 
hyperchaotic attractors, is shown. Note that the absorption of saddle-focus cycles with a two-
dimensional unstable manifold of different periods is well reflected in the values of the 
Lyapunov exponents; the absorption of a new saddle cycle increases both of the largest positive 
Lyapunov exponents. 

Now let us turn to the study of the formation of chaotic attractors with an additional zero 
Lyapunov exponent. The enlarged fragment in Fig. 5c shows areas with such dynamics. Note 
that the question of the accuracy of calculating Lyapunov exponents for this type of chaos is 
fundamentally important. In some situations, when not only saddle tori, but also saddle cycles 
with different dimensions of an unstable manifold contribute to the dynamics of the system, the 
additional zero Lyapunov exponent may not be zero, but close to zero. This situation is discussed 
in, for example [48-49]. 

We will also analyze a graphs of Lyapunov exponents and stroboscopic sections of phase 
portraits to study the mechanism of formation of such attractors. Figure 7 shows the 
corresponding illustrations for T=4.99 (Route B in Fig. 5a). Figure 7a shows a fragment of the 
graph where the emergence of chaotic behavior is observed. The area of complex dynamics is 
localized in the parameter space as in the previous case. There is a stable ergodic torus at small 
amplitudes, the loss of smoothness of which leads to the appearance of classical chaotic 
behavior. Self-oscillations of period-1 occur for large amplitudes. Corresponding limit cycle 
loses stability through the Neimark-Sacker (NS) bifurcation with decreasing amplitude and a 
torus is born. The ergodic torus undergoes two doubling bifurcations (TD) for a given choice of 
external force period. Figures 7d and 7e show examples of invariant curves in the stroboscopic 
section after the first and second bifurcation. After two bifurcations in the graph of Lyapunov 
exponents (Fig. 7c), we can see that periodicity windows appear and the invariant curve 



collapses. At the same time, the graph clearly shows that the chaos that appears in the system has 
a second Lyapunov exponent close to zero.  

 

 
Fig.7. Development of chaos with additional close to zero Lyapunov exponent in non-autonomous model of 
Anishchenko-Astakhov generator (6). Parameters: g=0.5, m=0.6, T=4.99 (Route B in Fig.5a). a., b., c. Graphs of 
the two largest Lyapunov exponents; d. – i. Maps in stroboscopic section: d. A=1.157; e. A=1.1555; f. A=1.1545; g. 
A=1.154; h. A=1.153; i. A=1.151. NS is Neimark-Sacker bifurcation; TD is torus-doubling bifurcation 
 

Figures 7f-7i show examples of stroboscopic maps for chaotic attractors with a second 
exponent close to zero. Table 2 presents the spectra of Lyapunov exponents, where one can see 
that the second exponent is close to zero, but is still weakly positive. The absence of a zero 
exponent in the spectrum is primarily due to the presence of resonances. Resonance cycles can 
be destroyed through Neimark-Sacker bifurcations which can lead to the appearance of saddle 
cycles with a two-dimensional unstable manifold in the attractor. The presence of saddle cycles 
is also possible, demonstrating cascades of period-doubling bifurcations. For smaller amplitude 
values, in the example of Fig. 7i, we can observe the transformation of the regime into classical 
chaos; we can see the concentration of points in the vicinity of some manifolds that correspond 
to saddle cycles with a one-dimensional unstable manifold. The uniformity of the distribution of 
points along the attractor is characteristic of attractors with an additional zero Lyapunov 
exponent [41-42]. 

Thus, we have shown that in the case of short pulses action to the model of the 
Anishchenko-Astakhov generator in the self-oscillation mode, hyperchaos can be excited, and 
chaos with an additional Lyapunov exponent close to zero occurs. Hyperchaos develops via 
secondary Neimark-Sacker bifircations, The occurrence of chaos with additional close to zero 
Lyapunov exponent is associated with the torus doubling bifurcation cascade. 

 
Table 2. Values of the Lyapunov exponents for different chaotic attractors observed in non-autonomous model of 
Anishchenko-Astakhov generator (6) at the threshold of chaos with additional close to zero Lyapunov exponent 
formation, g = 0.5, m = 0.6 
T A Λ1 Λ2 Λ3 Λ4 
4.99 1.1545 0.0161 0.0 -0.0011 -1.0251 



4.99 1.154 0.0312 0.0034 0.0 -1.0449 
4.99 1.153 0.0525 0.0008 0.0 -1.624 
4.99 1.151 0.0509 0.0 -0.0163 -1.0413 

 

5. Pulses action on the model of Anishchenko-Astakhov generator in the regime of chaotic 
self-oscillations 
5.1. Synchronization picture: main dynamical regimes, structure of parameter plane 

Let us consider how regions of chaos are transformed in the parameter plane in the case of 
the development of chaotic dynamics in an autonomous system. In Sect. 3, we presented the 
parameters at which chaotic behavior is observed in system (3). Let us fix the parameters in this 
way and study non-autonomous system. 

 

 
Fig.8. Synchronization picture of non-autonomous model of Anishchenko-Astakhov generator (6) in the 
regime of chaotic self-oscillations. a. Chart of dynamical regimes; b. Chart of Lyapunov exponents. Parameters: 
g=0.5, m=1.2. P is periodic oscillations; Q2 is two-frequency quasi-periodic oscillations; Q3 is three-frequency 
quasi-periodic oscillations; C is classical chaos; HC is hyperchaos; C0 is chaos with additional zero (or close to 
zero) Lyapunov exponent. lNS is line of Neimark-Sacker bifurcation; lSN is line of saddle-node bifurcation 

Figure 8 shows charts of dynamical regimes and of Lyapunov exponents for the case of 
chaotic dynamics of autonomous model. It is clearly seen that the picture of the regimes has 
changed greatly in comparison with what it was for periodic self-oscillations. The family of 
synchronization tongues has collapsed and chaotic behavior is observed at low external force 



amplitudes. Note that for signal amplitude values close to zero, chaos with an additional zero 
Lyapunov exponent is identified on the chart. It transforms into classical chaos with increasing 
amplitude of the external signal. We see suppression of the intrinsic dynamics for large values of 
the strength of external force parameter and stable oscillations of period-1 are realized in the 
system. With a decrease in amplitude, we can also observe two main scenarios for the 
development of chaos, which were also for the previous case: a cascade of period-doubling 
bifurcations and the destruction of the invariant torus, born as a result of the Neimark-Sacker 
bifurcation. The dominance of classical chaos, characterized by one positive and one zero 
Lyapunov exponent, is observed for large values of the period of external force. We also note 
that the Neimark-Sacker bifurcations are not detected in this region. Areas of two-frequency tori 
are observed at small values of the period of the external signal (high-frequency action). It is 
possible to trace the lines of torus-doubling bifurcations and the development of chaos with an 
additional zero Lyapunov exponent. 

 
5.2. Multi-dimensional chaos formation 

Let us consider in more detail the features of the emergence of multi-dimensional chaos. 
We constructed a zoomed fragment of the Lyapunov exponents chart for small values of the 
period of external force (Fig. 9a). The chart clearly shows areas of chaos with an additional zero 
Lyapunov exponent, as well as small areas of hyperchaos. The fragment depicts that several 
bifurcation lines emerge from the point of zero amplitude and period of the external force, 
forming a picture of the modes: there is a tongue of complete synchronization, the exit from 
which occurs through a saddle-node bifurcation with an increase in the amplitude of the external 
force (line lSN in Fig.9a). The transition to quasi-periodic oscillations with decreasing amplitude 
occurs through the Neimark-Sacker bifurcation (line lNS in Fig.9a), as a result of which a stable 
two-dimensional torus is softly born. The invariant torus undergoes a cascade of torus-doubling 
bifurcations (line lTD in Fig.9a) with a further decrease in the amplitude of the external force. As 
a result of cascade chaos is formed with an additional Lyapunov exponent close to zero. This 
region is quite uniform for small values of the parameter T; tongues of two-frequency quasi-
periodicity are observed inside it. The transformation of chaos with an additional zero into 
classical chaos is observed, as well as the formation of small areas of hyperchaos with an 
increase in the period of external force T. 

Figures 9b, 9c show graphs of Lyapunov exponents for T=1.5 (Route C in Fig. 9a) to 
analyze the features of the emergence of chaos with an additional zero Lyapunov exponent. 
Three bifurcations of invariant torus doubling (TD) can be traced in the graphs. Figure 9d shows 
an example of an 8-turn invariant curve after the third doubling bifurcation. The torus loses 
smoothness with a further decrease in the signal amplitude A. Figure 9f shows an example of a 
weak chaotic attractor, the largest Lyapunov exponent is very small in value, but positive. Table 
3 presents the values of Lyapunov exponents for the shown attractors, calculated with high 
accuracy. The merging of the torus components with a further decrease in amplitude is observed, 
which corresponds to the homoclinic bifurcation of the saddle tori and the chaotic attractor. 
Figure 9f shows an example of a chaotic attractor in a stroboscopic section, which has the 
structure of a 4-turn invariant curve. The third Lyapunov exponent of this attractor is close to 
zero (see Table 3). Figure 9g presents an example of a chaotic attractor after the next homoclinic 
bifurcation with a two-turn saddle torus. According to the spectrum of Lyapunov exponents, 
weak hyperchaos is diagnosed for this attractor, but the second positive exponent is also very 
close to zero, which indicates the contribution of the trajectory motion along the surface of the 
saddle tori. Figure 9h depicts the case where a single-turn torus was absorbed. In this case, there 
is no hyperchaos, the third negative Lyapunov exponent is very close to zero. 

 



 
Fig.9. Development of chaos with additional close to zero Lyapunov exponent in non-autonomous model of 
Anishchenko-Astakhov generator (6). a. Chart of Lyapunov exponents. Parameters: g=0.5, m=1.2. b., c. Graphs of 
the two largest Lyapunov exponents, T=1.5 (Route C in Fig.9a); d. – k. Maps in stroboscopic section: d. A=0.645; e. 
A=0.64; f. A=0.639; g. A=0.63; h. A=0.57; i. A=0.35; j. A=0.3; k. A=0.1. lNS, NS are line and point of Neimark-
Sacker bifurcation; lTD, TD are line and point of torus-doubling bifurcation; lSN is line of saddle-node bifurcation 
 

Table 3. Values of the Lyapunov exponents for different chaotic attractors observed in non-autonomous model of 
Anishchenko-Astakhov generator (6) at the threshold formation of chaos with additional close to zero Lyapunov 
exponent, g = 0.5, m = 1.2 
T A Λ1 Λ2 Λ3 Λ4 
1.5 0.64 0.0002 0.0 -0.0029 -0.3961 
1.5 0.639 0.0098 0.0 -0.0001 -0.4232 
1.5 0.63 0.0453 0.0003 0.0 -0.4552 
1.5 0.57 0.0878 0.0 -0.0001 -0.5249 
1.5 0.3 0.0292 0.0004 0.0 -0.6137 
1.5 0.1 0.0693 0.0 -0.0001 -0.6843 
 

As noted above, within regions of chaos with an additional zero Lyapunov exponent, 
regions of two-frequency tori can be seen. Figure 9i shows an example of a map in a 
stroboscopic section, where it is clear that a multi-turn invariant curve occurs. This invariant 
curve can also collapse in accordance with the scenario described above, and in this case the 
invariant curve does not double. For the chaotic attractor in Fig. 9j, the spectrum of Lyapunov 



exponents also contains additional Lyapunov exponent close to zero (see Table 3). Figure 9k 
presents an example of a chaotic attractor that includes saddle tori, both a basic one-turn 
invariant torus and a multi-turn torus, in the spectrum of Lyapunov exponents of which there is 
an additional Lyapunov exponent close to zero. 

A fragment of the chart of Lyapunov exponents (Fig. 9a) clearly shows that for large values 
of the parameter T the emergence of hyperchaos can be observed. Let us consider scenarios for 
the occurrence of hyperchaos at T=3 (Route D in Fig. 9a); the corresponding illustrations are 
shown in Fig.10. 

 

 
Fig.10. Development of hyperchaos in non-autonomous model of Anishchenko-Astakhov generator (6). 
Parameters: g=0.5, m=1.2, T=3.0 (Route C in Fig.9a). a., b., c. Graphs of the two largest Lyapunov exponents; d. – i. 
Maps in stroboscopic section: d. A=0.62; e. A=0.643; f. A=0.887; g. A=0.888; h. A=0.89; i. A=0.9. NS is Neimark-
Sacker bifurcation; TD is torus-doubling bifurcation 
 

At sufficiently large amplitudes of the external signal, two-frequency quasiperiodic 
oscillations are observed, as well as a torus doubling bifurcation. Figures 10d and 10e show the 
corresponding one-turn and double-turn invariant curves. The invariant curve has a complex 
shape; a further decrease in the amplitude A leads to the fact that the doubled invariant curve 
becomes resonant, loses smoothness, collapses and transforms into chaos (Fig. 10f). It is possible 
to diagnose small areas of hyperchaos on the graph of Lyapunov exponents in a wide range of 
changes in the amplitude parameter (Fig. 10a). Figure 10b and 10c show enlarged fragments in 
the area where hyperchaos occurs. Hyperchaos in this case is also formed through the absorption 
of saddle-focus cycles with a two-dimensional unstable manifold by a chaotic attractor. One can 
observe the occurrence of a stable limit cycle of period-19 (P19 in Fig. 10c) at amplitude A = 1.3. 
This cycle undergoes a Neimark-Sacker bifurcation as the amplitude decreases, and a stable 
invariant curve is born in the vicinity of each fixed point in the stroboscopic section. The 
appearance of two-frequency quasi-periodic oscillations (T19 in Fig. 10c) is observed on the 
graph of Lyapunov exponents; in phase space, such an attractor is represented by 19 invariant 
curves in the stroboscopic section. The destruction of invariant curves leads to the appearance of 



a 19-component chaotic attractor, which is then transformed into a one-component (Fig. 10f). 
Figure 10g clearly demonstrates that in the structure of the attractor there are areas not filled with 
points that correspond to the saddle-focus cycle of period-19; this attractor is characterized by 
only one positive Lyapunov exponent (see Table 4). As parameter A decreases, a homoclinic 
bifurcation occurs between the saddle-focus cycle of period-19 and the chaotic attractor, as a 
result the attractor becomes hyperchaotic (see Fig. 10h, Table 4). With a further decrease in the 
signal amplitude, a homoclinic bifurcation occurs between the base cycle of period-1 and the 
chaotic attractor, which is also characterized by two positive Lyapunov exponents. We can also 
observe this scenario with increasing amplitude. At A = 1.29 there is a stable limit cycle of 
period-38 (P38 in Fig. 10c). With amplitude increasing cycle P38 undergoes Neimark-Sacker 
bifurcation and 38 invariant curves appear in stroboscopic map (T38). Then it become resonant 
and hardly transforms to hyperchaos. The hard transition can be associated with mutistability. 
For Fig.10c we made additional checking: we changed direction of scanning of parameter with 
continuation of initial conditions, and the hard transition is persist. 

 

Table 4. Values of the Lyapunov exponents for different chaotic attractors observed in non-autonomous model of 
Anishchenko-Astakhov generator (6) at the threshold of hyperchaos formation, g = 0.5, m = 1.2 
T A Λ1 Λ2 Λ3 Λ4 
3.0 1.43 0.0102 0.0 -0.019 -0.8318 
3.0 1.296 0.0145 0.0 -0.0081 -0.7835 
3.0 1.293 0.0244 0.0092 0.0 -0.8148 
3.0 1.21 0.0973 0.0229 0.0 -0.9019 

 
6. Conclusions 

We study the dynamics of the model of Anishchenko-Astakhov generator under periodic 
pulse action. Various cases of choosing the parameters of the autonomous system are considered: 
periodic and chaotic self-oscillations. 

For the case when the autonomous model demonstrates periodic oscillations, it is shown 
that the synchronization picture is close in structure to the classical synchronization picture 
observed in a two-dimensional system. However, for a three-dimensional system we reveal the 
appearance of secondary Neimark-Sacker bifurcations and the development of chaos as a result 
of the destruction of two-frequency tori. This scenario for the development of chaos leads to the 
manifestation of the effect of a multi-dimensional system: hyperchaos and chaos with an 
additional Lyapunov exponent close to zero form. The region in the vicinity of the subharmonic 
synchronization tongue of period-3, where multi-dimensional chaos appears, is shown on the 
plane of the “period – amplitude” parameters of the external force. Cascades of bifurcations of 
invariant torus doubling in this region, as well as cascades of the secondary Neimark-Sacker 
bifurcations, can be traced. Cascades of bifurcations of invariant torus doubling lead to the 
formation of a chaotic attractor, in the spectrum of which, in addition to positive and zero, there 
is Lyapunov exponent close to zero (weakly negative or positive). The absence of a zero 
exponent can be explained by the finiteness of the bifurcation cascade of tori doublings. 
Cascades are interrupted by the appearance of resonances, which made impact to dynamics. 

For the case when the autonomous dynamics of the model is chaotic, in the non-
autonomous case multi-dimensional chaos is also observed. Chaos with an additional Lyapunov 
exponent close to zero is observed at a small value of external force amplitude. Chaos transforms 
into classical chaos for large values of the period of external force with increasing amplitude. 
Chaos with an additional Lyapunov exponent close to zero persists at short periods. There are 
windows of two-frequency quasi-periodicity within the region with an additional zero Lyapunov 
exponent. Periodic and quasi-periodic oscillations occur at small periods and signal amplitudes. 
The transition from periodic oscillations to quasi-periodic can occur as a result of the Neimark-
Sacker bifurcation, as well as a result of the saddle-node bifurcation. The development of chaos 
occurs through doubling of invariant curves with a decrease in amplitude. The development of 
hyperchaos is observed as a result of the homoclinic bifurcation of the saddle-focus limit cycle 
and the chaotic attractor in small regions of the parameter plane. 



The obtained results open the route to the opportunity of implementation of discrete 
Shilnikov attractors in the physical experiment. For the best our knowledges nowadays it wasn’t 
shown. The Anishchenko-Astakhov generator is enough simple radio-physical generator, which 
can be realized with analog electronic base. Kicked by pulses generator would be allow to 
demonstrate discrete Shilnikov attractors in the experiment. We plan to continue our work in this 
direction. Another work for future is tried to obtain multi-dimensional chaos in the model with 
another way of complification. Instead external force it can be considered the effects of 
fractional order [50-53]. 
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